por matway » Sex Set 09, 2011 17:11
Boa tarde, gostaria de saber como calculara área da seguinte figura, sabendo-se que o resultado é: 2.320m.

Uploaded with
ImageShack.us Obrigada
-
matway
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Set 04, 2011 17:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estudos Sociais
- Andamento: formado
por Neperiano » Sex Set 09, 2011 17:48
Ola
Primeiro você calcula a hipotenusa do triangulo do lado que se não me engano é 50, hip ^2=cat^2+cat^2
Ai você calcula a hipotenusa do outro triangulo ali que vai ser hip^2 = 14^2+40^2, depois é só calcular a area dos 2 triangulos e do quadrado e somar
Espero ter ajudado
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por MarceloFantini » Sex Set 09, 2011 18:00
Ou, equivalente e mais rapidamente, depois de calcular a hipotenusa basta somar a área do trapézio com a área do triângulo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Neperiano » Sex Set 09, 2011 18:10
Ola
Dá para fazer o que o marcelo falou, mas isso se voce souber calcular trapézio.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por matway » Sáb Set 10, 2011 11:03
Obrigada, abraços.
-
matway
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Set 04, 2011 17:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estudos Sociais
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cálculo de área
por rogerdbest » Qui Ago 05, 2010 17:02
- 1 Respostas
- 2029 Exibições
- Última mensagem por Molina

Qui Ago 05, 2010 18:01
Geometria Plana
-
- calculo de área
por angeloka » Sáb Nov 13, 2010 22:41
- 1 Respostas
- 1882 Exibições
- Última mensagem por MarceloFantini

Dom Nov 14, 2010 00:18
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 17:49
- 2 Respostas
- 2224 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 08:05
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 18:56
- 2 Respostas
- 2288 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 01:00
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de area
por shantziu » Seg Set 05, 2011 16:57
- 1 Respostas
- 1397 Exibições
- Última mensagem por LuizAquino

Seg Set 05, 2011 21:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.