por Gilder » Sex Jan 30, 2009 18:12
O problema é o seguinte:
"Considere um quadrado ABCD e os pontos E, F, K e L, pertencentes aos lados AB, BC, CD e AD, respectivamente,
tais que os segmentos EK e FL são perpendiculares. Mostre que EK = FL."
Basicamente, tento resolve-lo procurando triangulos semelhantes que provem essa equivalencia, mas mesmo prolongando retas e colocando seguimentos como EF e LK, não acho nenhuma semelhança eficiente.
Se alguem tiver alguma dica...
Agradeço desde já.
-
Gilder
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Jan 30, 2009 17:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Informática
- Andamento: cursando
por Sandra Piedade » Dom Fev 01, 2009 10:32
Seja G o centro do quadrado, ou seja, a intersecção das diagonais do quadrado. Note-se que as diagonais são perpendiculares e bissectam-se. Fazendo uma rotação das diagonais com centro em G e amplitude
![\alpha\in\left[0,\frac{\pi}{2} \right] \alpha\in\left[0,\frac{\pi}{2} \right]](/latexrender/pictures/e812ab689e2b73ce421dc75083a0562c.png)
, obtemos os triângulos [GDL], [GAE], [GBF] e [GCK]. Todos estes triângulos são geometricamente iguais. Tente ver porquê, relembrando os critérios de igualdade de triângulos. Diga depois as conclusões das suas observações, ok? Se não conseguir justificar a igualdade, eu ajudo. E depois da igualdade é fácil concluir a resposta à questão.

Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
por Gilder » Dom Fev 01, 2009 16:51
Deu certo. os triangulos tinham um lado de mesma medida, e os tres angulos iguais, assim eram congruentes, daí ficou tranquilo.
Obrigado!
Agora, preciso mostrar que o ortocentro de um triangulo acutangulo ABC, é o incentro do triangulo DEF, sendo D, E e F respectivamente os pés das alturas relativas aos lados AB, BC, CA.
Meu raciocínio tentei traçar uma reta s paralela ao lado BC, que passa por A. Então prolonguei os seguimentos ED, e EF, até atingirem a paralela s nos pontos D' e F', porém não consegui mostrar que o triangulo ED'F' é isósceles pois assim EA seria uma bissetriz.
Deve haver algum jeito mais facil. Qualquer ajuda é bem vinda.
-
Gilder
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Jan 30, 2009 17:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Informática
- Andamento: cursando
por Sandra Piedade » Ter Fev 03, 2009 08:32
Para essa terei que pensar um pouco mais. Não tenho dúvida de que é válida a afirmação, agora o porquê, vai dar um pouco mais trabalho. É melhor colocar essa questão num novo tópico de geometria, para que outros colaboradores pensem também nela... É que eu posso demorar mais do que você pode esperar.
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida quanto ao enunciado: Subespaços
por Leonardomaiaavila » Ter Fev 25, 2014 01:18
- 0 Respostas
- 1134 Exibições
- Última mensagem por Leonardomaiaavila

Ter Fev 25, 2014 01:18
Álgebra Linear
-
- Dúvida quanto a esta questão
por Bruno Felipe » Qui Mai 19, 2016 12:55
- 0 Respostas
- 1344 Exibições
- Última mensagem por Bruno Felipe

Qui Mai 19, 2016 12:55
Geometria Plana
-
- [transformada de fourier] dúvida quanto a resolução
por fabriel » Qua Dez 02, 2015 16:35
- 0 Respostas
- 1120 Exibições
- Última mensagem por fabriel

Qua Dez 02, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
-
- [Determine a matriz x] dúvida quanto ao cálculo a ser feito
por Dani Rezende » Seg Ago 19, 2013 20:54
- 3 Respostas
- 4001 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 02, 2013 09:07
Matrizes e Determinantes
-
- Dúvida - desafio
por marinalcd » Qui Mar 06, 2014 16:37
- 2 Respostas
- 1885 Exibições
- Última mensagem por adauto martins

Sáb Dez 06, 2014 12:37
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.