por Mi_chelle » Seg Abr 25, 2011 15:21
Não consigo resolver esse problema:
As bicicletas possuem uma corrente que liga uma coroa dentada dianteira, movimentada pelos pedais, a uma coroa localizada no eixo da roda traseira.
O número de voltas dadas pela roda traseira, a cada pedalada, depende do tamanho relativo dessas coroas.
a) Suponhando que o diâmetro da coroa dianteira seja D2=30cm, o da coroa traseira, D1=10cm, e o diâmetro da roda traseira seja Dr= 80cm, calcule o deslocamento aproximado efetuado pela bicicleta quando o ciclista dá uma pedalada (considere pi=3).
b)Caso a bicicleta possua marchas , cada marcha é uma combinação de uma das coroas traseiras, qual é o possivel total de marchas, tendo em vista que ela possui duas coroas dianteiras e cinco traseiras?
Resposta Gabarito: a)2,4m e b)10 marchas.
A questão b, imaginando que cada marcha seria a combinação de uma das coroas traseira, com uma da dianteira fiz:
2x15=10 marchas.
Poirém a questão a, não consigo desenvolver, comecei calculando o deslocamento da coroa dianteira:
Variação angular= Deslocamento/ Raio
Deslocamento= 3x15
Deslocamento= 45
Não sei se iniciei corretamente e não consigo imaginar o que fazer depois disso.
-
Mi_chelle
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Mar 28, 2011 17:35
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Química
- Andamento: formado
por FilipeCaceres » Seg Abr 25, 2011 20:25
a)Observe que ao darmos uma peladada completa a coroa traseira dará 3 voltas,pois a coroa dianteira de 3 vezes maior.
Como a coroa traseira esta ligada diretamente na roda esta por sua vez também dará 3 voltas, sendo assim temos,
Deslocamento:

, n é o número de voltas e R o raio da roda.

Como o enúnciado diz para utilizarmos

temos,


b) Como cada coroa dianteira pode fazer combinação com 5 coroa traseira, temos

possibilidades.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Mi_chelle » Qui Abr 28, 2011 01:47
Muito obrigada pela ajuda!!
-
Mi_chelle
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Seg Mar 28, 2011 17:35
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Química
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Dúvida]Um desafio que envolve probabilidade
por Gabi Biel » Qui Out 17, 2013 20:37
- 5 Respostas
- 3605 Exibições
- Última mensagem por temujin

Sáb Out 19, 2013 21:05
Probabilidade
-
- Dúvida de Física - Lei de Coulomb.
por Sobreira » Dom Mai 05, 2013 16:41
- 4 Respostas
- 1605 Exibições
- Última mensagem por Russman

Dom Mai 05, 2013 20:57
Álgebra Elementar
-
- Dúvida Física - Dipolo elétrico.
por Sobreira » Ter Mai 21, 2013 02:01
- 0 Respostas
- 641 Exibições
- Última mensagem por Sobreira

Ter Mai 21, 2013 02:01
Aritmética
-
- Calculo que envolve PA e PG
por andersontricordiano » Qua Mar 16, 2011 12:21
- 1 Respostas
- 2132 Exibições
- Última mensagem por Molina

Qua Mar 16, 2011 14:05
Progressões
-
- Calculo que envolve PG
por andersontricordiano » Qui Mar 31, 2011 02:19
- 3 Respostas
- 1625 Exibições
- Última mensagem por FilipeCaceres

Qui Mar 31, 2011 17:35
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.