• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROVAR POR ABSURDO!!!!

PROVAR POR ABSURDO!!!!

Mensagempor Rose » Sex Set 26, 2008 19:21

olà!!!


Aguém consegue provar por absurdo o teorema abaixo. Eu....não consigo!!!

"Para cada reta r, existe um ponto P não incidente à reta."
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

LOGICA-AJUDA urgente!!!

Mensagempor Rose » Ter Set 30, 2008 15:26

Olá!!

Estou precisando da ajuda de vocês, para me orientarem ou terminarem o que já fiz. Alguém que domine bem a lógica pode me ajudar^.
Vejam o que eu consegui fazer:

Ficha de demonstração



Teorema 6: Para cada reta r, existe um ponto P não incidente ã r.

Hipótese: r é uma reta

Tese: Existe um ponto P não incidente a r.

Demonstração

Afirmação Justificativa

1. Seja r uma reta 1. Hipótese

2. Não existe um ponto P não 2. Regra de lógica 3

Incidente a r.

3. Sejam P e Q, pontos distintos e 3. Linha 1, axioma 3

Incidentes a r.

4. Existe uma reta s distinta de r 4. Teorema 4

Passando por P.

5. Seja U um ponto distinto de P 5. Axioma 2

E incidente a r.

6. Logo U também incide a r 6. Linha 2

7. r =s 7. Axioma 1,

8. r e s são distintos 8.





O problema que descrevi acima consiste em provar por Absurdo o seguinte teorema: Para cada reta r, existe um ponto P não incidente â r.
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: PROVAR POR ABSURDO!!!!

Mensagempor fabiosousa » Ter Set 30, 2008 17:56

Olá Rose, boa tarde!
Seus tópicos foram unidos. Você poderia enviar o complemento no tópico original.


Em primeiro lugar devo esclarecer que não considero "dominar" qualquer área da matemática.
Sobre a afirmação, em alguns casos ela é até mesmo tratada como axioma (não necessitando de prova) e não como teorema.

Como você fez em uma das etapas, supondo que (1) não existe um ponto P não incidente à r, se chegarmos a qualquer absurdo, logo não valerá (1), portanto:
existe um ponto P não incidente à r.

Também convém sempre saber com quais axiomas podemos lidar.
Sobre o "qualquer absurdo" comentado, você pode pensar assim: se não existe um ponto P não incidente à r, todos os pontos são incidentes à r, ou seja, há apenas r no espaço, por exemplo, não há planos ou outras retas distintas.

Sobre o desenvolvimento que você fez, repare que de imediato outros teoremas/axiomas (neste caso, 4) se tornam absurdos mediante a afirmação 2.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 878
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: