por freddrago » Qua Fev 16, 2011 13:12

Considerando como comprimento da secante AB a variavel "X", e o comprimento da flecha FF' a variavel "Y", qual seria a equação para determinar o raio da circunferencia?
Grato
Fred.
-
freddrago
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por freddrago » Qua Fev 16, 2011 22:08
Considerando que todo triangulo inscrito, com um dos catetos igual ao diametro é retangulo. Extendendo-se a flecha, temos uma linha que corta o centro da circunferencia que chamamos de ponto C.

desta forma temos o triangulo ACF' e outros dois triangulos semalhantes, AFF' e ACF, que representarei da seguinte forma:
AC = a
CF' = b
F'A = c
AF = x/2
FF' = y
F'A = c
AC = a
CF = e
AF = x/2
pelo teorema de tales, e por algum motivo estou errando aqui teriamos:
a/b = (X/2)/y = a/e
b/c = y/c = e/(x/2)
a/c = (x/2)/c = a/(x/2)


e por Pitagoras, temos:
![c=\sqrt[]{(4y^2+x^2)/4} c=\sqrt[]{(4y^2+x^2)/4}](/latexrender/pictures/82fa450ec9b192c90a18c4eceef3232f.png)
substituindo em

![a=x^2/4\sqrt[]{(4y^2+x^2)/4} a=x^2/4\sqrt[]{(4y^2+x^2)/4}](/latexrender/pictures/2cce5d6107658c57e65a973331d2ebe3.png)


considerando:

![(1/4y^2+2)^2=b^2+( \sqrt[]{(4y^2+x^2)/4} )^2 (1/4y^2+2)^2=b^2+( \sqrt[]{(4y^2+x^2)/4} )^2](/latexrender/pictures/39e8f3bc6d9a2ebb864a63dfb4b20913.png)





- Não sei se esta redução é coerente. é aqui que estou travando...
se alguem puder ajudar....
-
freddrago
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por Renato_RJ » Qua Fev 16, 2011 22:41
Boa noite Fred, tudo em paz ??
Seguinte, no seu desenho você desenhou uma corda indo do ponto C ao ponto A e depois outra que ia do ponto A ao ponto F'. Beleza, reparou que esse segmento CAF' forma um semicírculo ? Então, podemos afirmar que o ângulo CÂF' é reto, isto é, mede 90º pois todos os ângulos que subtendem um semicírculo são retos.
Logo, usando as suas definições:

Mas, como o ângulo CÂF' é reto e o segmento AF mede

então teremos um triângulo retângulo CAF onde:

Fazendo CF = CF (meio obvio essa):

Se houver erros, me perdoe, posso ter escorregado em alguma definição por aí... rss...
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por LuizAquino » Qui Fev 17, 2011 07:56
freddrago escreveu:Considerando que todo triangulo inscrito, com um dos catetos igual ao diametro é retangulo. Extendendo-se a flecha, temos uma linha que corta o centro da circunferencia que chamamos de ponto C.

- circulo_2.jpg (6.29 KiB) Exibido 4001 vezes
Correção: A
hipotenusa deve ser igual ao diâmetro e não o cateto.
Para ser mais preciso, só podemos inscrever um triângulo retângulo em uma circunferência se a hipotenusa dele for igual ao diâmetro da circunferência. Isso deve-se ao fato apontado pelo colega Renato.
Renato_RJ escreveu:(...) reparou que esse arco CAF' forma um semicírculo ? Então, podemos afirmar que o ângulo CÂF' é reto, isto é, mede 90º pois todos os ângulos que subtendem um semicírculo são retos.
No exercício, você está considerando que AF=FB=x/2 (F é ponto médio de AB=x), FF'=y e FF' é perpendicular a AB.
Como vimos, o triângulo CAF' é retângulo. Aplicando a relação métrica que envolve a altura do triângulo retângulo e as projeções dos catetos sobre a hipotenusa, temos que

Lembrando que

, nós obtemos que

. Isolando r, nós obtemos

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Renato_RJ » Qui Fev 17, 2011 08:06
LuizAquino escreveu:No exercício, você está considerando que AF=FB=x/2 (F é ponto médio de AB=x), FF'=y e FF' é perpendicular a AB.
Como vimos, o triângulo CAF' é retângulo.
Aplicando a relação métrica que envolve a altura do triângulo retângulo e as projeções dos catetos sobre a hipotenusa, temos que

Lembrando que

, nós obtemos que

. Isolando r, nós obtemos

.
Sabia que eu tinha esquecido alguma coisa.. Hehhehe.. Muito obrigado Luiz
Eu tinha esquecido completamente da relação métrica....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por freddrago » Qui Fev 17, 2011 16:39
Muito obrigado...
estava fazendo uma lambança só...
-
freddrago
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinar a equação geral da elipse com centro na origem, q
por juniocs » Qua Mai 29, 2013 15:31
- 2 Respostas
- 13643 Exibições
- Última mensagem por juniocs

Sáb Jun 08, 2013 17:18
Geometria Analítica
-
- Centro e raio da esfera, determine-os.
por apotema2010 » Qua Fev 09, 2011 18:48
- 1 Respostas
- 4785 Exibições
- Última mensagem por LuizAquino

Qua Fev 09, 2011 19:12
Geometria Analítica
-
- [circunferência] determinar a equação
por Fabio Wanderley » Qui Abr 26, 2012 11:23
- 1 Respostas
- 3123 Exibições
- Última mensagem por LuizAquino

Qui Abr 26, 2012 16:16
Geometria Analítica
-
- uma circunferência de centro no ponto....
por willwgo » Qua Abr 13, 2011 17:57
- 3 Respostas
- 5869 Exibições
- Última mensagem por FilipeCaceres

Qui Abr 14, 2011 16:18
Geometria Analítica
-
- Qual é o centro da circunferência?
por David_Estudante » Sáb Mai 25, 2013 17:46
- 1 Respostas
- 1007 Exibições
- Última mensagem por arthurvct

Sex Mai 31, 2013 15:41
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.