• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar catetos pela hipotenusa e pela altura

Achar catetos pela hipotenusa e pela altura

Mensagempor gustavoluiss » Dom Dez 05, 2010 23:44

Em um triângulo retângulo, a hipotenusa mede 40 m e a altura relativa a ela, 19,2 m .Calcule as medidas dos catetos.

Tava resolvendo ai tive que eleveta 768² e por numa equação biquadrada,é isso ?

Ou tem como fazer uma proporção com hipotenusa e os catetos e resolver de uma maneira mais simples ?
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor PedroSantos » Seg Dez 06, 2010 05:35

Também fiquei com uma dúvida:
Consideremos o triangulo ABC, retangulo em B e a hipotenusa como base do triangulo. Ao traçarmos um segmento de recta do vertice B prependicular à base,obtemos a altura em relação à base(hipotenusa) e dividimos o angulo reto em dois de 45º.
Ficamo com 2 triangulos, o ABD e o BCD, ambos retangulos em D. Se a divisão do angulo B deu origem a dois angulos de 45º e se D é retangulo, pode-se concluir que os angulos A e C têm 45º.
Será que o meu racicinio está correcto?
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor fttofolo » Seg Dez 06, 2010 09:47

Pedro, você não pode concluir 2 ângulos de 45, pois não fala que o triângulo é isósceles.
Um exemplo:
imagem1.JPG
imagem1.JPG (5.26 KiB) Exibido 5188 vezes
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor fttofolo » Seg Dez 06, 2010 10:10

Gustavo já resolvi por dois outros caminhos e as respostas são cabulosas. Não falta algum detalhe no enunciado?
fttofolo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Sex Nov 19, 2010 10:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor Elcioschin » Seg Dez 06, 2010 15:04

Gustavo

bc = ah ----> bc = 40*19,2 ----> bc = 768 ----> c = 768/b

b² + c² = a² ----> b² + (768/b)² = 40² -----> (b²)² - 1600b² + 768² = 0 ----> Bi-quadrada (ou equação do 2º grau na variável b²)

Discriminante ----> D = 1600² - 4*768² ----> D = 1600² - (2²)*(768²) ----> D = 1600² - (2*768)² ----> D = 1600² - 1536² ----> D = (1600 + 1536)*(1600 - 1536)

D = 3136*64 ----> D = (56)²*(8²) ----> V(D) = 56*8 ----> V(D) = 448

I) b² = (1600 + 448)/2 ----> b² = 1024 ----> b = 32 ----> c = 24

II) b² = (1600 - 448)/2 ----> b² = 1152 ----> b = 34 -----> c ~= 22,6
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Achar catetos pela hipotenusa e pela altura

Mensagempor gustavoluiss » Seg Dez 06, 2010 20:37

É tenque fazer uma equação biquadrada mesmo,feio hehe,questão do livro de nono ano.... vlw obrigado.
gustavoluiss
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 118
Registrado em: Ter Nov 23, 2010 15:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?