• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria analitica ponto equidistante

geometria analitica ponto equidistante

Mensagempor jeffersonricardo » Seg Ago 16, 2010 17:18

determine o ponto equidistante de A(1,7), B(8,6), C(7,-1).

ja tentei fazer usando a formula e não consequir me ajudem
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: geometria analitica ponto equidistante

Mensagempor Douglasm » Seg Ago 16, 2010 17:44

Olá Jefferson. Se os pontos são equidistantes de um determinado ponto P sabemos que:

D_{AP}^2 = D_{BP}^2 = D_{CP}^2

A partir daí vamos comparar as distâncias entre diferentes pontos, a fim de encontrarmos duas equações distintas que relacionem as coordenadas de P. Começaremos comparando D_{AP} com D_{BP}:

(1 - x_p)^2 + (7 - y_p)^2 = (8 - x_p)^2 + (6 - y_p)^2 \;\therefore

1 - 2x_p + x_p^2 + 49 - 14y_p + y_p^2 = 64 - 16x_p + x_p^2 + 36 - 12y_p + y_p^2

14 x_p - 2 y_p = 50 \;\therefore

7x_p - y_p = 25

E encontramos a nossa primeira equação. Agora compararemos D_{AP} com D_{CP}

(1 - x_p)^2 + (7 - y_p)^2 = (7 - x_p)^2 + (-1 - y_p)^2 \;\therefore

1 - 2x_p + x_p^2 + 49 - 14y_p + y_p^2 = 49 - 14x_p + x_p^2 + 1 + 2y_p + y_p^2 \;\therefore

12x_p = 16y_p \;\therefore

3x_p = 4y_p

Isso já é o suficiente. Agora temos duas equações para duas incógnitas. Substituindo a segunda equação na primeira:

7x_p - \frac{3}{4} x_p = 25 \;\therefore

x_p = 4

Voltando a segunda equação:

3.4 = 4y_p \;\therefore

y_p = 3

Finalmente chegamos ao ponto equidistante de A, B e C, que é P(4,3).
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59