por Fogodc » Seg Abr 05, 2010 23:33
Considere um triângulo ABC inscrito numa circunferência e seja E o ponto de interseção da bissetriz externa relativa ao, ângulo B com prolongamento do segmento CM, onde M é o ponto médio do arco menor AB. Prove que BÊC= A/2
Estou com dúvida nessa questão não consigo fazer de jeito nenhum. Alguém por favor me ajude.
-
Fogodc
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Abr 05, 2010 23:06
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Triângulo inscrito
por laisv11 » Qui Mai 28, 2009 16:33
- 4 Respostas
- 10643 Exibições
- Última mensagem por Molina

Sáb Mai 30, 2009 22:05
Geometria Plana
-
- Triângulo / Inscrito
por Marcelo C Delgado » Qua Nov 10, 2010 16:06
- 3 Respostas
- 2569 Exibições
- Última mensagem por Rogerio Murcila

Qui Nov 18, 2010 19:04
Trigonometria
-
- triangulo inscrito
por alfabeta » Qui Mar 01, 2012 15:51
- 7 Respostas
- 3658 Exibições
- Última mensagem por MarceloFantini

Dom Mar 04, 2012 20:02
Geometria Plana
-
- triangulo inscrito e circunscrito
por Katia Silveira » Sex Mai 16, 2014 17:46
- 1 Respostas
- 1931 Exibições
- Última mensagem por e8group

Sex Mai 16, 2014 18:07
Geometria Plana
-
- OSCM 2009 - Triângulo inscrito
por anfran1 » Dom Jul 08, 2012 12:27
- 10 Respostas
- 5405 Exibições
- Última mensagem por anfran1

Ter Jul 10, 2012 14:21
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.