• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBLEMA DA CIRCUNFERÊNCIA

PROBLEMA DA CIRCUNFERÊNCIA

Mensagempor zenildo » Seg Nov 02, 2015 23:02

Para a circunferência: x²+y²-mx-4y-c=0 tenha centro C (1,2) e raio 5, os valores de m e de c, são respectivamente:

a) -1 e -10
b) -2 e 25
c) 1 e -20
d) 2 e 20

Este estilo de questão ainda não me deparei.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: PROBLEMA DA CIRCUNFERÊNCIA

Mensagempor nakagumahissao » Ter Nov 03, 2015 12:42

A equação de uma circunferência de centro em (a,b) e raio r é por definição:

{(x-a)}^{2} + {(y-b)}^{2} = r^2

Sabendo-se que o Centro é C(1,2) e raio r = 5, então:

{(x-1)}^{2} + {(y-2)}^{2} = 5^2

Desmembrando esta equação, teremos:

x^2 - 2x + 1 + y^2 - 4y + 4 = 25

x^2 - 2x + y^2 - 4y + 5 - 25 = 0

x^2 - 2x + y^2 - 4y  - 20 = 0

Comparando com a equação da circunferência dada, concluimos que:

m = 2 e c = 20
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: PROBLEMA DA CIRCUNFERÊNCIA

Mensagempor zenildo » Qui Nov 05, 2015 20:43

Na resolução da questão, não compreendi o seguinte: como ele tirou da circunferência a equação; porque a partir dela ele começou a resolver. Então como sei que surgiu aquela equação ou como ele conseguiu ver e raciocinar sobre ela.

Obrigado.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: PROBLEMA DA CIRCUNFERÊNCIA

Mensagempor nakagumahissao » Qui Nov 05, 2015 23:46

Veja bem, a resolução se iniciou através da DEFINIÇÃO da circunferência pois precisávamos saber como ficaria a equação da circunferência com os valores dados para termos alguma coisa para que pudéssemos fazer uma comparação com a equação dada para obtermos os valores de m e c. Simplesmente por causa disto. Partir da equação dada para encontrarmos m e c é muito difícil ou até mesmo, impossível!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}