• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[área do triângulo] epcar 2007

[área do triângulo] epcar 2007

Mensagempor Ederson_ederson » Ter Jul 07, 2015 11:13

Em um triângulo ABC, M e N são pontos médios dos lados AB e AC, respectivamente. Duas retas paralelas passam por M e N e cortam o lado BC em Q e P, respectivamente. Se S é a área do triângulo ABC, então a soma das áreas dos triângulos BQM e CPN é igual a

a) s/2
b) 3/4 s
c) s/3
d) s/4

eu desenhei o triângulo, sei as fórmulas da área do triângulo, mas não consegui saber por onde começo, pois não tem nenhuma informação.

Na verdade, de forma bem simples eu pensei em dividir o triângulo em triângulos retângulos (como BQM) como fiz no anexo, mas não sei se pode fazer o que fiz. A resposta deu 2/8 = 1/4.

Obs.: não consegui anexar meu desenho.

Obrigado!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}