Sejam A, B e C pontos dois a dois distintos. Mostre que AB + BC >/= AC, e que AB + BC = AC se , e somente se, B está no segmento AC.
Primeiro, mostremos que AB + BC >/= AC. De imediato, pela Desigualdade Triangular, vem que AB + BC > AC se A, B e C não são colineares; caso contrário, temos as seguintes possibilidades, conforme as posições dos pontos em questão:
1 - AB + BC = AC , quando A - B - C;
2 - AB + BC > AC, quando B - A - C;
3 - AB + BC > AC, quando A - C - B;
Logo, concluímos que AB + BC >/= AC. Agora, mostremos a bicondicional: AB + BC = AC
