• Anúncio Global
    Respostas
    Exibições
    Última mensagem

riângulos ABC e DEF são congruentes

riângulos ABC e DEF são congruentes

Mensagempor Ana Maria da Silva » Qua Abr 17, 2013 15:42

Se os triângulos ABC e DEF são congruentes com a = 7,0, b = x/2, c = 5,5, d = y/3, e = 8,7 e f = z, de acordo com a figura abaixo, calcule x + y + z. Não consigo colocar as figuras.
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: riângulos ABC e DEF são congruentes

Mensagempor e8group » Qua Abr 17, 2013 17:02

Por definição de congruência de triângulos ,veja : http://www.professores.uff.br/dirceuesu/GBaula2.pdf

Temos que

\triangle{ABC} \cong \triangle{DEG}  \iff

\begin{cases} AB \equiv DE \\ BC\equiv EF \\ CA \equiv FD \end{cases}  \text{e}   \begin{cases} \hat{A} = \hat{D} \\ \hat{B} = \hat{E} \\ \hat{C} = \hat{F} \end{cases} \right )

Como não há figura anexada ,imagino que :

AB = a = 7 , BC =b= x/2 , CA = c = 5,5 , DE = d = y/3 , EF = e = 8
,7 e FD = f = z . Caso as medidas estão relacionadas corretamente , vamos ter que

x +y +z = 2 BC + 3 DE + FD = 2 EF + 3AB + CA = 2 \cdot 8,7 + 3 \cdot 7 + 5,5 = 43,9 .

Observação: Ao invés de triângulo DEG é DEF .Troquei a letra F por G simplesmente pelo LaTeX apresentar o seguinte problema ,o código \triangle{DEF} produz [Unparseable or potentially dangerous latex formula. Error 2 ] diferente de \triangle{DEG} = \triangle{DEG}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.