• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria no espaço- coordenadas de ponto

Geometria no espaço- coordenadas de ponto

Mensagempor emsbp » Sáb Abr 06, 2013 16:34

Boa tarde. É dado a equação do plano \alpha: x-3y-2z+4=0 e o ponto P(-1;2;1). O exercício pede que determinemos as coordenadas do ponto T, pertencente ao plano \alpha, e que está mais próximo do ponto P.
Sei que a distância mais próxima do ponto P terá de ser na perpendicular em relação a T. Comecei por pensar em formar o vetor TP, sendo T(x,y,z), mas a partir daí não estou a conseguir resolver.
Peço ajuda.
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Geometria no espaço- coordenadas de ponto

Mensagempor temujin » Sáb Abr 06, 2013 17:55

Boa tarde.

Este vetor TP que vc tomou pode sempre ser decomposto em uma soma de 2 vetores: um paralelo ao vetor normal ao plano (que é a projeção ortogonal de TP sobre N) e outro paralelo ao próprio plano. A distância de P ao plano será, então, igual à norma da projeção ortogonal e é dada por:

\frac{\left | \vec{TP}.N \right |}{\left || N \right ||}

Acho que com isto vc consegue prosseguir, certo?
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Geometria no espaço- coordenadas de ponto

Mensagempor Russman » Sáb Abr 06, 2013 18:42

O seu pensamento está correto.

Primeiro, você constrói o vetor \overrightarrow{TP} usando P(-1,2,1) e T(x,y,z).

\overrightarrow{TP}=<(x_p - x_T),( y_p - y_T ),(z_p - z_T)> = <(-1-x),(2-y),(1-z)>.

Agora, como você disse, esse vetor deve ser perpendicular a qualquer vetor pertencente ao plano. Isto é, o vetor \overrightarrow{TP} tem de ser paralelo ao vetor normal ao plano que é obtido pelos coeficientes da equação do plano.

\alpha :ax+by+cz+d=0\Rightarrow \overrightarrow{n}=<a,b,c>\Rightarrow  \overrightarrow{n}<1,-3,-2>.

Ou seja, o produto vetorial \overrightarrow{TP}\times \overrightarrow{n} tem de ser nulo e , consequentemente, o vetor \overrightarrow{TP} é um múltiplo do próprio vetor normal. Mas não qualquer múltiplo. Note que o módulo de \overrightarrow{TP} é exatamente a distância(definida perpendicularmente ao plano) entre o plano e o ponto P. Sabemos que esta é dada por

d(P,\alpha ) = \frac{\left | ax_p+by_p+cz_p+d \right |}{\sqrt{a^2+b^2+c^2}}

que pode ser calculada uma vez que conhecemos o ponto P. Vou chamar essa distância de k.

Portanto,

\overrightarrow{TP}=d(P,\alpha )\frac{\overrightarrow{n}}{\left | \overrightarrow{n} \right |} =  \frac{k}{\sqrt{1^2+(-3)^2+(-2)^2}}<1,-3,-2> = \frac{k}{\sqrt{14}}<1,-3,-2>

e, assim,

<(-1-x),(2-y),(1-z)> = \frac{k}{\sqrt{14}}<1,-3,-2>

de onde

-1-x = \frac{k}{\sqrt{14}}
2-y = -3 \frac{k}{\sqrt{14}}
1-z = -2 \frac{k}{\sqrt{14}}

Agora basta você isolar as coordenadas de T.

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Geometria no espaço- coordenadas de ponto

Mensagempor emsbp » Dom Abr 07, 2013 16:37

Boa tarde.
Muito obrigado. Já percebi.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D