por Georges123 » Sex Fev 15, 2013 10:52
![ln=\sqrt[]{2R²-r\sqrt[]{4R²-LN²}} ln=\sqrt[]{2R²-r\sqrt[]{4R²-LN²}}](/latexrender/pictures/eaaaed059e85ac13ac01bba6161caa5b.png)
( não considere esse  eu coloquei no editor e saiu assim é : ln=v2r²-rv4r²-ln²
COM essa fórmula eu tentei calcular o seno de 22,5 (22,5 mesmo e não 22,5º)
e encontrei
![\frac{\sqrt[]{2-\sqrt[]{2}}}{2} \frac{\sqrt[]{2-\sqrt[]{2}}}{2}](/latexrender/pictures/3f3ec9ad373da76348e7f8f1c4531da8.png)
( está correto?)
porem não consegui calcular o cosseno.
Ajude-me por favor
-
Georges123
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 15, 2013 10:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Sex Fev 15, 2013 21:25
não sei se entendi bem mais se voce esta querendo calculo o seno e cosseno do angulo 22,5º
voce pode utilizar as seguintes relações

e

substituindo por 22,5º teremos

como esse angulo tem relações conhecidas de seno e cosseno voce consegue calcular
a equação que voce colocou

eu não sei oque ela significa não sei oque é r e ln se tivesse como voce demonstrar algo a respeito...
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Georges123 » Sex Fev 15, 2013 23:38
Esta é a fórmula de duplicação de arcos. Eu estou aprendendo a calcular por essa forma ( além de ser bem limitada usando os ângulos diretamente proporcionais a 30 45 e 60). Lembrando que o que sai do centro e encontra o lado perpendicularmente é o apótema.
CDEF É UM QUADRADO INSCRITO A CIRCUNFERÊNCIA E PORTANTO LN = 4
ln: número de lados
R: Raio.
-
Georges123
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 15, 2013 10:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Georges123 » Dom Fev 17, 2013 16:43
Desculpe mais a relação que você tirou com o cosseno de 22,5 eu não entendi, poderia me explicar de forma mais didática como você encontro o cosseno, pois é nele que eu me embolo

.
Por favor e muito obrigado
-
Georges123
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 15, 2013 10:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Dom Fev 17, 2013 23:25
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Georges123 » Seg Mar 18, 2013 05:04
Olá eu fiquei com uma dúvida na resolução dessa conta:
![\frac{\sqrt[]{{\frac{R\sqrt[]{2-\sqrt[]{2}}}{2}}^{2}} - {R}^{2} }{R} \frac{\sqrt[]{{\frac{R\sqrt[]{2-\sqrt[]{2}}}{2}}^{2}} - {R}^{2} }{R}](/latexrender/pictures/24a9482c4cc80b760b77271f8fcdd635.png)
OBS: AQUELE 2 EM CIMA É AO QUADRADO.
que é o cosseno de 22,5º
-
Georges123
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 15, 2013 10:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Seg Mar 18, 2013 17:56
acho que a equação é esta, certo?

primeiro elevando oque esta no parentese ao quadrado

tirando o minimo multiplo do que esta na raiz temos


tirando o R^2 e o 4 da raiz

simplificando os R

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Georges123 » Dom Mar 24, 2013 00:17
Entendi muito obrigado.
-
Georges123
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Fev 15, 2013 10:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana
por claudia » Qui Out 23, 2008 16:11
- 1 Respostas
- 8609 Exibições
- Última mensagem por admin

Ter Out 28, 2008 16:47
Geometria Plana
-
- Geometria plana
por Rayanne07 » Qua Jan 13, 2010 17:40
- 3 Respostas
- 4546 Exibições
- Última mensagem por Rayanne07

Sex Jan 15, 2010 10:46
Geometria Plana
-
- Geometria Plana
por MelvinMyster » Sex Ago 13, 2010 10:07
- 1 Respostas
- 4703 Exibições
- Última mensagem por alexandre32100

Sex Ago 13, 2010 13:15
Geometria Plana
-
- Geometria plana
por Paulo A G » Qua Jan 26, 2011 16:11
- 0 Respostas
- 2444 Exibições
- Última mensagem por Paulo A G

Qua Jan 26, 2011 16:11
Geometria Plana
-
- geometria plana
por Abner » Seg Jan 31, 2011 17:53
- 3 Respostas
- 3493 Exibições
- Última mensagem por Abner

Ter Fev 01, 2011 17:31
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.