por RBenicio » Qua Set 16, 2009 15:34
Tenho o seguinte problema:
É dado o comprimento da corda = 10 e o comprimento do arco = 12. Calcular a flexa máxima.
Já utilizei todas as relações existentes do calculo do arco e da flexa
ArcoAB = Pi.R.phi/180 e f = R - 1/2.sqrt[4{R}^{2} - {w}^{2}]
mas não consigo chegar a um valor.
Obrigado pela ajuda.
Ramon
-
RBenicio
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Set 16, 2009 14:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Molina » Qui Set 17, 2009 00:33
Boa noite, Ramon.
Desculpe, desconheço o termo "flexa". Procurei com X mesmo e com CH (que possivelmente é o correto), mas não encontrei nada. Poderia explicar o que se trata? Talvez mostrar também com a ajuda de um desenho.
Abraço!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Marcampucio » Qui Set 17, 2009 14:11
Olá Molina, as definições são estas:

A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Molina » Qui Set 17, 2009 14:45
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [artigo] círculo unitário e algumas relações trigonométricas
por admin » Ter Jun 03, 2008 17:03
- 1 Respostas
- 2847 Exibições
- Última mensagem por Neperiano

Sex Set 16, 2011 19:48
Geometria
-
- Círculo trigonométrico
por Ananda » Sex Fev 29, 2008 10:56
- 8 Respostas
- 7272 Exibições
- Última mensagem por Ananda

Seg Mar 03, 2008 17:51
Trigonometria
-
- Círculo trigonométrico
por Ananda » Qui Mar 06, 2008 23:00
- 1 Respostas
- 3553 Exibições
- Última mensagem por Neperiano

Dom Set 04, 2011 22:07
Geometria
-
- Círculo Trigonométrico
por caiolasagno » Seg Abr 13, 2009 21:18
- 1 Respostas
- 2226 Exibições
- Última mensagem por Marcampucio

Seg Abr 13, 2009 21:29
Trigonometria
-
- Equação de um Círculo
por Cleyson007 » Qua Abr 07, 2010 11:46
- 4 Respostas
- 1786 Exibições
- Última mensagem por Cleyson007

Qui Abr 08, 2010 12:50
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.