por Adri » Ter Mai 18, 2010 22:12
Boa noite, estou tentando ajudar a uma funcionária que trabalha comigo na resolução de algumas questões de matemática. Porém, não consegui resolver as seguintes questões:
Questão 1: O segmento AB é diâmetro da circunferência cuja equação é x² + y² = 10y. Se A é o ponto (3;1), então calcule as coordenadas do ponto B.
Questão 2: Para que a equação x² + y² - 4x + 8y + K = 0 represente um ponto, devemos ter:
a) k= 20 b) k = 13 c) k = 12 d)k = 14 e) k = 10
Ficarei no aguardo de suas orientações. Grata pela ajuda, desde já.
Adriana.
-
Adri
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mai 18, 2010 21:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Nutrição
- Andamento: formado
por Douglasm » Ter Mai 18, 2010 22:53
Olá Adri. Primeiro vamos determinar as formas reduzidas da equação da circunferência (em ambos os problemas):

Usando o método de completar quadrados, chegamos a seguinte forma reduzida:
Comparando com a equação geral da circunferência

, temos:
Centro: (0,5)
Raio: 5
Agora o que queremos encontrar é um ponto que dista 5 unidades do centro e 10 unidades do ponto A: (Aqui é possível resolver algebricamente, mas eu prefiro usar um argumento geométrico, já que estamos falando do diâmetro. Os valores em azul são aqueles já conhecidos.)

- círculocomreta.JPG (11.16 KiB) Exibido 17460 vezes
Vemos que o ponto B é (-3,9). (Perdoe-me pela visível falta de proporção da figura!)
Agora o segundo:
Novamente completaremos os quadrados na equação:

O que nos interessa aqui é que o raio seja igual a zero, deste modo a equação corresponderá apenas a um ponto (o centro da potencial circunferência). Logo:

Letra A
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Adri » Qua Mai 19, 2010 22:12
Boa noite,
Venho agradecer a ajuda na resolução dos problemas enviados. Procurei entender o desenvolvimento das questões e já repassei à minha funcionária, que ficou imensamente agradecida e feliz, por conseguir o trabalho com todas as questões resolvidas.
Aproveito para parabenizar a iniciativa, no incentivo aos estudos e aprimoramento da matemática.
Torço para que continue ajudando muitas outras pessoas, e quem sabe a mim mesma novamente.
Mais uma vez agradeço.
Abraço, Adriana.
-
Adri
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Mai 18, 2010 21:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Nutrição
- Andamento: formado
por Douglasm » Qui Mai 20, 2010 13:04
Disponha Adriana. Dúvidas serão sempre bem recebidas por aqui e tratadas com seriedade. Até uma próxima vez.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por paulo testoni » Qua Abr 29, 2020 15:11
Hola Douglasm.
Muito boa a sua explicação. Seria muito mais fácil encontrar o raio da circunferência e aplicar a fórmula do ponto médio de um segmento. Vc tem o ponto A(3, 1) e tem o C(0, 5). O cento é o ponto médio do segmento AB. Então:
x_m = (x + 3)/2
0 = (x + 3)/2
x + 3 = 0
x = -3
=======
y_m = (y + 1)/2
5 = (y + 1)/2
2*5 = y + 1
10 - 1 = y
y = 9
============
B=(-3, 9). Bem mais simples.
-
paulo testoni
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Ter Set 30, 2008 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [circunferência] Geometria Plana
por claudia » Qui Ago 14, 2008 18:35
- 11 Respostas
- 13777 Exibições
- Última mensagem por claudia

Seg Ago 18, 2008 18:24
Geometria Plana
-
- Geometria Plana - medição da circunferência
por claudia » Ter Set 09, 2008 16:49
- 19 Respostas
- 19635 Exibições
- Última mensagem por admin

Sex Set 12, 2008 17:04
Geometria Plana
-
- [Geometria Plana] A circunferência e decorrentes
por mausim » Ter Out 25, 2011 13:15
- 5 Respostas
- 3768 Exibições
- Última mensagem por mausim

Qua Out 26, 2011 12:39
Geometria Plana
-
- [Geometria Plana - Circunferência] Palanque
por raimundoocjr » Sex Mai 04, 2012 20:36
- 1 Respostas
- 4797 Exibições
- Última mensagem por Guill

Dom Mai 06, 2012 09:45
Geometria Plana
-
- [Geometria Plana] Circunferencia tangencida por duas retas
por stuartl » Dom Out 13, 2013 12:04
- 0 Respostas
- 1596 Exibições
- Última mensagem por stuartl

Dom Out 13, 2013 12:04
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.