• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido

exerc.resolvido

Mensagempor adauto martins » Qua Out 23, 2019 13:02

(ENE-escola nacional de engenharia da universidade do brasil,rj-exame de admissao 1953)
determinar o comprimento do menor segmento de reta que passa pelo ponto de coordenadas nao nula(a,b) e cujas extremidades estao sobre o eixos coordenados,supostos retangulares.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Qua Out 23, 2019 13:23

soluçao:
vamos tomar o primeiro quadrante para efeito de calculo,mas vale para qquer quadrante.
seja M(x,0) e N(0,y) os ponto dos eixos extremos do segmento que contem o ponto(a,b).
entao temos a seguinte configuraçao,vamos imaginar.uma reta inclinada,passando por (a,b),formando um triangulo retangulo com os eixos,onde o angulo reto seja a origem,ou seja o triang.retangulo MON.construamos dentro desse triang.retangulo o triangulo MbP,onde b,é o ponto (0,b) e P(a,b).esses triangulos sao semelhante,logo teremos as proporçoes:

(bP/OM)=(bN/ON)\Rightarrow (a/x)=((y-b)/y)

daqui isolamos y=f(x),com algebrismos comuns(faça-os!),teremos:

y=bx/(x-a)...
bom,sabemos que o segmento MN, é a hipotenusa do triangulo maior,MON,logo:

MN=\sqrt[]{{x}^{2}+{y}^{2}}=\sqrt[]{{x}^{2}+{(bx/(x-a))}^{2}}

derivando MN,em relaçao a x, e igualando a zero,encontraremos o valor de x=f(a,b).esse sera o valor minimo ou valor maximo de MN.
verificaremos calculando a derivada segunda de MN,e verificando seu valor,que no caso deva ser positivo para qquer a e b,
mostrando ser ponto de minimo.entao aos interessados,termine-o...é calculo "pacas",mas compensa como exercicio e preparaçao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}