por LCV » Qua Jun 22, 2016 14:13
Olá, pessoal!
Estou estudando para um processo seletivo do IFES, curso técnico. Para isso, tento resolver questões de anos anteriores, e empaquei na seguinte:

Não consigo visualizar a resolução de forma alguma!
Consegui apenas achar a altura do trapézio, depois de encontrar a altura do triângulo equilátero, de lado 6 (duas vezes o raio) formado pela conexão entre os centros de cada circunferência. Mas isso não me adiantou para encontrar o perímetro.
Alguma ajuda para encontrar os lados do quadrilátero e, assim, seu perímetro?
Grato!
-
LCV
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 22, 2016 13:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Sociais
- Andamento: formado
por VonHeld18 » Qua Jun 22, 2016 21:31
Olá!! Creio que a resposta correta seja a letra “c” e te demonstrarei o porquê.
Primeiro é necessário conhecer um teorema da geometria plana. Segundo ele, retas tangentes à circunferência que partem do mesmo ponto definem segmentos congruentes desde esse ponto até a tangência. Por consequência, a reta que une esse ponto ao centro da circunferência é a bissetriz desses segmentos.
Além disso, como se pode ver na imagem abaixo, a partir do prolongamento das retas AD e BC, obtém-se o triângulo equilátero ARB, que por sua vez é semelhante ao grandãlhão DRC. Como os ãngulos interno de um triãngulo equilátero são iguais, vê-se que os ângulos internos do trapézio isósceles ABCD são  e ^B= 120° e ^C e ^D= 60°.
Daí fica fácil. Basta saber que o raio da circunferência é perpendicular aos pontos de tangência e resolver os triângulos retângulos ZDJ, IYF e WOA por relações trigonométricas. Achando, deste modo, os valores de g e f, que são

e

. Depois basta somar tudo e você chegará ao resultado

PS: Perdão pela horrível montagem no paint.

-
VonHeld18
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jun 22, 2016 20:58
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por LCV » Qui Jun 23, 2016 11:46
Obrigado pela ajuda, VonHeld18!!
Achei que eu não pudesse prolongar as retas e formar um triângulo equilátero; parei por aí!
Ah, quando disse "triângulo IYF", quis dizer IYC, não é?
Grato!
-
LCV
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 22, 2016 13:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Sociais
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quadrilátero circunscrito
por Lana Brasil » Dom Abr 07, 2013 16:10
- 2 Respostas
- 1355 Exibições
- Última mensagem por Lana Brasil

Ter Abr 09, 2013 14:33
Geometria Plana
-
- Triangulo circunscrito no circulo
por leandrynhucarioca » Seg Ago 15, 2011 23:55
- 0 Respostas
- 1028 Exibições
- Última mensagem por leandrynhucarioca

Seg Ago 15, 2011 23:55
Geometria Plana
-
- triangulo inscrito e circunscrito
por Katia Silveira » Sex Mai 16, 2014 17:46
- 1 Respostas
- 1819 Exibições
- Última mensagem por e8group

Sex Mai 16, 2014 18:07
Geometria Plana
-
- [Geometria Plana] quadrado circunscrito e inscrito na circun
por ordnave70 » Qua Out 19, 2011 10:29
- 1 Respostas
- 2192 Exibições
- Última mensagem por TheoFerraz

Qua Out 19, 2011 15:56
Geometria Plana
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4241 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.