• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor Padoan » Qui Fev 11, 2010 18:36

E aqui... eu também estava em dúvida nessa:

Em um triângulo equilátero, ABE, cujo lado mede a , e um quadrado, BCDE, cujo lado também mede a. Com base nessas informações, é CORRETO afirmar que a área do triângulo
ABC é

a) a² / 3
b) a² / 4
c) a² ?3 / 4
d) a² ?3 / 4

No caso seria uma piramide quadrangular com os lados de valor a, então eu fiz da seguinte forma:

a = l² ?3 /4
a = a² ?3/4

Beleza, opção C, porém no gabarito diz ser opção B... alguem saberia me ajudar?
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor MarceloFantini » Sex Fev 12, 2010 01:10

Boa noite Padoan.

O triângulo pedido não é equilátero. Veja o desenho:

Imagem

Para calcular a área basta usar:

A_{\Delta ABC} = \frac{1}{2} ab sen \theta

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área do Triângulo

Mensagempor Padoan » Sex Fev 12, 2010 12:13

Ainda estou meio boiando...
Tipo, temos um quadrado de valores = a, um triangulo equilatero de lados de valores = a e temos que descobrir a area de um triangulo com base = a e um lado = a... ainda não entendi S:

Edit:

Aqui, consegui passar a imagem para cá... acabou que eu pensei que era uma piramide, eu so retardado auhauhau

Imagem
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor Molina » Sex Fev 12, 2010 13:03

Temos que trata-se de um triângulo isósceles com dois lados a e o lado AC (base do triângulo) que não conhecemos. Temos a informação que o ângulo B vale 60+90=150 graus. E com isso sabemos os dois outros ângulos, já que é um triângulo isósceles: os ângulos A e C possuem 15 graus.

Acho que podemos encontrar o valor do segmento AC usando a lei dos seno ou a lei do cosseno.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Área do Triângulo

Mensagempor Padoan » Sex Fev 12, 2010 13:08

Ah, eu pedi pro professor de física... matemática só semana que vem D:
Ele disse isso mesmo, tinha que usar lei do seno/cosseno

Tenso que isso eu ainda não aprendi no colégio.
Mas como voce soube que B vale 150?
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área do Triângulo

Mensagempor Molina » Sex Fev 12, 2010 13:11

Padoan escreveu:Mas como voce soube que B vale 150?

O ângulo do triângulo é 60 graus, pois trata-se de um triângulo equilátero. E o ângulo do quadrado é 90 graus. Somando os dois chegamos em 150 graus.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Área do Triângulo

Mensagempor MarceloFantini » Sex Fev 12, 2010 13:42

Boa tarde.

Não é para calcular o outro lado, portanto não precisa usar teorema do seno ou cosseno. Basta usar o teorema de calcular a área tendo dois lados e o ângulo entre eles (não sei se tem nome ao certo). Veja:

Imagem

Demonstração

Seja o triângulo ABC um triângulo qualquer e \overline {CD} sua altura. Sua área é definida como:

A = \frac{1}{2} \times c \times h

Calculando o seno de alpha, vemos que:

sen \alpha = \frac{h}{b}

Portanto:

h = sen \alpha \times b

Logo, encontramos que a área de um triângulo qualquer pode ser calculada como:

A = \frac {1}{2} \times c \times b \times sen \alpha

Esse teorema é importante e prático, procure lembrar dele.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}