• Anúncio Global
    Respostas
    Exibições
    Última mensagem

referencial r.o.n

referencial r.o.n

Mensagempor ulisses123 » Dom Jul 13, 2014 16:21

sendo A(2,4) e B(5,2),prove que a expressão A+(1:4)AB,representa um ponto de [AB]
ulisses123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 20, 2014 14:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso tecnico em gestao
Andamento: formado

Re: referencial r.o.n

Mensagempor e8group » Dom Jul 13, 2014 19:03

Um segmento de retas é o conjunto \{ tB + (1-t) A ;    t \in [0,1] \}  = \{A + t \cdot AB  ;    t \in [0,1] \} . E

\frac{1}{4} \in [0,1] então ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: referencial r.o.n

Mensagempor ulisses123 » Seg Jul 14, 2014 16:01

muito obrigado
ulisses123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 20, 2014 14:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso tecnico em gestao
Andamento: formado


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.