• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria plana pontos notáveis

Geometria plana pontos notáveis

Mensagempor matematicodabaixada » Dom Mar 17, 2013 05:41

Não sei especificamente de onde esta questão é , porém acredito que seja de alguma olímpiada

A distância do circuncentro ao baricentro de um triângulo cujas três alturas medem: 0,333.....cm , 0,2 cm e 0,25 cm é expressa pelo número racional : m/n , com m e n sendo números naturais primo entre si. A quantidade de quadrados cujos lados são expressos por números que dividem o número(m+n) é:

a) zero
b) um
c) dois
d) três
e) quatro

Sinceramente eu não entendi como vou encontrar esta distância do circuncentro ao baricentro. Por favor me ajudem!!!!!
matematicodabaixada
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 17, 2013 05:14
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}