• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Semelhança de Triângulos

Semelhança de Triângulos

Mensagempor DaviBahia » Qui Fev 28, 2013 14:51

Boa tarde,

Venho aqui, desta vez, não para tirar uma dúvida específica de determinado assunto, e sim para pedir sugestões de livros, sites etc. que apresentem o seguinte:

-> Diferença entre os conceitos de semelhança e congruência de triângulos (ou esses conceitos podem ser considerados sinônimos?);
-> Os casos de congruência e semelhança;
-> E, se possível, exercícios.

Já busquei alguns livros para coletar informações sobre o assunto, porém, às vezes, acredito que seja útil fazer esse pedido de sugestões.
DaviBahia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Fev 28, 2013 14:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino MÉdio
Andamento: cursando

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.