por Gustavo Gomes » Qua Dez 19, 2012 22:37
Pessoal...
Na figura abaixo, o quadrilátero grande é formado por 4 trapézios congruentes ao trapézio azul (isósceles). Quanto medem seus ângulos internos (do trapézio azul)?
A resposta é 60º e 120º.
Na figura fica claro que os três lados menores do trapézio são iguais, mas não consegui deduzir a medida dos seus ângulos, analisando a figura....

- teste.png (7.22 KiB) Exibido 1329 vezes
Grato.
-
Gustavo Gomes
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Out 05, 2012 22:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática-Licenciatura
- Andamento: formado
por timoteo » Qui Dez 20, 2012 00:47
oi gustavo.
quando ele diz isosceles ele se refere especificadamente ao trapezio azul e que ele é oriundo do corte de um triangulo isosceles.
como sabemos o triangulo isosceles tem um angulo de 30° e outro de 60°.
quando olhamos o trapezio e traçamos "a linha verde" vemos que surge outro triangulo retangulo de lado 30° e 60°.
fazendo-se as contas certas teremos como resposta que o trapezio tem: 60° e 120°.
veja:
- Anexos
-

- trapezio metrado
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma dos Ângulos internos.
por sauloandrade » Sáb Dez 29, 2012 21:07
- 5 Respostas
- 4470 Exibições
- Última mensagem por e8group

Dom Dez 30, 2012 17:51
Geometria Plana
-
- [Trigonometria]Ângulos Internos
por ALPC » Seg Jul 01, 2013 14:33
- 2 Respostas
- 2114 Exibições
- Última mensagem por ALPC

Seg Jul 01, 2013 15:33
Trigonometria
-
- Angulos internos de um triangulo.
por albtec01 » Sáb Abr 12, 2014 19:19
- 0 Respostas
- 973 Exibições
- Última mensagem por albtec01

Sáb Abr 12, 2014 19:19
Trigonometria
-
- furg- os números que expressam angulos internos
por Natalie » Sex Set 16, 2011 18:30
- 1 Respostas
- 1604 Exibições
- Última mensagem por MarceloFantini

Sex Set 16, 2011 18:45
Progressões
-
- Calculo dos angulos internos dum triangulo hiperbólico
por Jhenrique » Ter Jul 24, 2012 18:42
- 0 Respostas
- 1746 Exibições
- Última mensagem por Jhenrique

Ter Jul 24, 2012 18:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.