por fernandocez » Sex Nov 23, 2012 15:54
Mais uma questão que não consegui resolver.
49) Os pontos A(1,3), B(4,0) e C(3, k) são vértices de um triângulo retângulo, onde o ângulo CÂB é reto, e k é um número real. A hipotenusa desse triângulo mede:
a)
![\sqrt[]{13} \sqrt[]{13}](/latexrender/pictures/2e90750460e35e2d0642549705d5a7c8.png)
b)
![2\,\sqrt[]{13} 2\,\sqrt[]{13}](/latexrender/pictures/813a977b81d91e4cf6991c75efc0f8cf.png)
c)
![\sqrt[]{26} \sqrt[]{26}](/latexrender/pictures/600cdd78b650c67c223dff983b7e7d6f.png)
(resposta certa)
d)
![2\,\sqrt[]{26} 2\,\sqrt[]{26}](/latexrender/pictures/e81adc87466012c051833a47a38a2cc6.png)
e)
![3\,\sqrt[]{26} 3\,\sqrt[]{26}](/latexrender/pictures/dc96338b211d2e4a9f00db01738d04d2.png)

Eu fiz o desenho me baseando na possibilidade da coordenada C ser (3, 5). Primeiro tentei encontrar o "K" com as fórmulas de geometria analítica (distancia entre dois pontos, e etc) e não consegui. Se tivesse conseguido, ai sim usaria a geom. analitica pra encontrar o tamanho da hipotenusa. Agradeço quem puder me orientar a melhor forma de resolve o problema.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por young_jedi » Sex Nov 23, 2012 17:33
voce encontrou que k é igual a 5 esta certo
oque voce tem que fazer e traçar uma reta que vai do ponto C(3,5) ate o ponto (3,0) e uma reta de (3,0) ate o ponto B (4,0) então voce tera um triangulo retangulo em que um cateto mede 5 e o outro mede 1 portanto por pitagoras


-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por fernandocez » Sex Nov 23, 2012 19:38
A segunda parte ficou clara. Mas eu não encontrei o valor de K, eu fui na tentativa até encontrar o k = 5. Gostaria de saber como encontrar o valor de K de forma correta. Agradeço pela ajuda Young_jed.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por young_jedi » Sex Nov 23, 2012 21:31
A sim tranquilo fernandocez
trace uma reta paralela ao eixo y e que passe pelo ponto A

- QUESTO~1.JPG (19.69 KiB) Exibido 3282 vezes
por semelhança de triangulos



-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por fernandocez » Sáb Nov 24, 2012 16:17
Valeu mesmo!! Eu não conseguia ver esses dois outros triângulos e pensei que só dava pra resolver por geometria analítica. Era muito mais fácil que eu imaginava. Mais uma vez obrigado.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria plana] questão concurso 2011
por fernandocez » Sáb Out 08, 2011 00:25
- 3 Respostas
- 4418 Exibições
- Última mensagem por fernandocez

Sex Mar 16, 2012 22:51
Geometria Plana
-
- [equações lineares] Concurso magistério 03/2011
por fernandocez » Qui Jul 19, 2012 19:14
- 4 Respostas
- 3081 Exibições
- Última mensagem por fraol

Sex Jul 20, 2012 20:49
Sistemas de Equações
-
- Questão prova magisterio 2008
por fernandocez » Seg Fev 14, 2011 16:42
- 4 Respostas
- 2824 Exibições
- Última mensagem por LuizAquino

Ter Fev 15, 2011 20:10
Polinômios
-
- Questão prova magisterio 2007
por fernandocez » Seg Fev 14, 2011 17:21
- 1 Respostas
- 1321 Exibições
- Última mensagem por LuizAquino

Seg Fev 14, 2011 19:57
Geometria Plana
-
- Questão prova magisterio 2008
por fernandocez » Sáb Fev 26, 2011 11:39
- 3 Respostas
- 2215 Exibições
- Última mensagem por LuizAquino

Sáb Fev 26, 2011 19:15
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.