por alfabeta » Qui Mar 01, 2012 15:51
Um triângulo eqüilátero ABC está inscrito em um círculo de raio r. Sejam: D, o ponto médio do arco AC e F, oponto médio do lado BC (do triângulo). Prolongue o segmento
de reta DF, a partir de F, até encontrar o círculo em G. Determine, em termos de r, a medida do segmento FG.
Não consigo fazer o desenho desta figura. Alguem poderia me ajudar?
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por timoteo » Qui Mar 01, 2012 20:19
alfa, onde esta o ponto G, vc nao cita ele durante o argumentaçao do problema. onde ele esta?
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
por alfabeta » Qui Mar 01, 2012 21:09
é justamente o prolongamento de F até encontrar o círculo. Esta questão é da UFC.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Mar 03, 2012 09:20
alfabeta escreveu:Um triângulo equilátero ABC está inscrito em um círculo de raio r. Sejam: D, o ponto médio do arco AC e F, o ponto médio do lado BC (do triângulo). Prolongue o segmento de reta DF, a partir de F, até encontrar o círculo em G. Determine, em termos de r, a medida do segmento FG.
alfabeta escreveu:Não consigo fazer o desenho desta figura.
A figura abaixo ilustra o exercício.

- triângulo-equilátero.png (9.94 KiB) Exibido 3404 vezes
Qual foi a sua dificuldade para desenhar essa figura? Na sua tentativa, o que ficou diferente em relação a figura acima?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alfabeta » Dom Mar 04, 2012 13:06
Eu já consegui desenhar a figura. ficou exatamente desta forma. Não consigo agora é achar uma relação com r.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Dom Mar 04, 2012 15:12
alfabeta escreveu:Eu já consegui desenhar a figura. ficou exatamente desta forma. Não consigo agora é achar uma relação com r.
Observe a figura abaixo.

- triângulo-equilátero2.png (9.09 KiB) Exibido 3386 vezes
Agora tente terminar o exercício.
Aqui vão duas dicas:
- os triângulos retângulos DCF e FGB são semelhates;
-
.
Tente justificar porque essas duas dicas são verdadeiras.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alfabeta » Dom Mar 04, 2012 17:50
Os dois triangulos são semelhantes pelo criterio angulo angulo: o angulo dfc = angulo bfg ( opostos pelo vertice) e ambos possuem angulo de 90 graus. Certo?
OC= OD = OB= raio. Não entendi porque CD = raio e o porque do angulo de 60.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Dom Mar 04, 2012 20:02
Lembre-se que D é ponto médio
do arco. Como o triângulo é equilátero, ele divide a circunferência em três arcos iguais de 120°. Tomando o ponto médio, temos que os arcos

e tem ângulo de 60° medidos a partir do centro. Traçando os raios de O até D e C, vemos que o ângulo, como explicado anteriormente, é de 60° e é um triângulo isósceles, logo os ângulos da base

são iguais e somados valem 120°, daí o triângulo é equilátero também e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Triângulo inscrito
por laisv11 » Qui Mai 28, 2009 16:33
- 4 Respostas
- 10456 Exibições
- Última mensagem por Molina

Sáb Mai 30, 2009 22:05
Geometria Plana
-
- Triângulo Inscrito
por Fogodc » Seg Abr 05, 2010 23:33
- 0 Respostas
- 1516 Exibições
- Última mensagem por Fogodc

Seg Abr 05, 2010 23:33
Geometria Plana
-
- Triângulo / Inscrito
por Marcelo C Delgado » Qua Nov 10, 2010 16:06
- 3 Respostas
- 2449 Exibições
- Última mensagem por Rogerio Murcila

Qui Nov 18, 2010 19:04
Trigonometria
-
- triangulo inscrito e circunscrito
por Katia Silveira » Sex Mai 16, 2014 17:46
- 1 Respostas
- 1816 Exibições
- Última mensagem por e8group

Sex Mai 16, 2014 18:07
Geometria Plana
-
- OSCM 2009 - Triângulo inscrito
por anfran1 » Dom Jul 08, 2012 12:27
- 10 Respostas
- 5056 Exibições
- Última mensagem por anfran1

Ter Jul 10, 2012 14:21
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.