• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda Questão sem solução

Ajuda Questão sem solução

Mensagempor borgoboy » Ter Jan 24, 2012 22:37

Esta Questão tem solução???
Tentei de tudo que é jeito, mas não consigo calcular pitagoras, me parece que esta faltando dados

Questão Matematica.png
borgoboy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jan 24, 2012 22:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Geometria
Andamento: cursando

Re: Ajuda Questão sem solução

Mensagempor ant_dii » Qua Jan 25, 2012 03:59

Veja figura

figura.png.jpg
Representação do Problema


Colocando um ponto E em CD de modo que KE \perp CD.
Por Pitágoras, teremos que JE=10, então DJ=14 e JC=16.

Como J deve coincidir com B, temos que KJ=KB e BL=JL, mas
BC=BL+LC \Rightarrow 24=BL+LC \Rightarrow BL=24-LC \Rightarrow JL=24-LC

Por Pitágoras, agora no triângulo \Delta JLC, temos
JL^2=LC^2+JC^2 \Rightarrow (24-LC)^2=LC^2+16^2  \Rightarrow \\ \\ \Rightarrow 24^2-48 \cdot LC+LC^2=LC^2+16^2 \Rightarrow 24^2-16^2=48 \cdot LC  \Rightarrow \\ \\ \Rightarrow 320=48LC  \Rightarrow LC=\frac{20}{3}

Assim, \mbox{Area}_{JLC}=\frac{\frac{20}{3}\cdot 16}{2}=\frac{160}{3}.

Outra forma seria fazer por partes, observando que
\mbox{Area}_{ABCD}=\mbox{Area}_{AKED}+\mbox{Area}_{EKJ}+\mbox{Area}_{JKL}+\mbox{Area}_{LKB}+\mbox{Area}_{JLC}
e que
\Delta JKL \equiv \Delta LKB, de onde \mbox{Area}_{JKL}=\mbox{Area}_{LKB}=\frac{\frac{52}{3}\cdot 26}{2}=\frac{676}{3}

Logo, \mbox{Area}_{ABCD}=\mbox{Area}_{AKED}+\mbox{Area}_{EKJ}+2\mbox{Area}_{JKL}+\mbox{Area}_{JLC} \Rightarrow \\ \\ \Rightarrow 720=96+120+2\left(\frac{676}{3}\right)+\mbox{Area}_{JLC}

Espero ter ajudado, mesmo achando uma resposta diferente da que esta marcada. Neste caso verifique se o que fiz te faz sentido ou se deixei algum detalhe de lado... Confesso que estou cansado e não to vendo erro em vista disso...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Ajuda Questão sem solução

Mensagempor borgoboy » Qui Jan 26, 2012 10:06

Muito obrigado pela resposta...
Realmente sua resposta está correta. Errei está questão em um concurso recente. Agora vou prestar mais atenção aos detalhes .
borgoboy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jan 24, 2012 22:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Geometria
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D