• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria plana

Geometria plana

Mensagempor Lucio » Seg Dez 26, 2011 11:46

Bom dia.
Me deparei com esse problema e não cheguei a resposta.
Eis o problema:
A altura de uma parede é de 4 m. Uma escada está apoiada na parede de modo que seu ponto mais alto coincide com a extremidade superior da parede e os pés da escada estão afastados da base da parede. Se os pés da escada forem afastados mais 1 m da parede, a escada cairá no chão, ficando com a parte superior rente à base da parede. Nessa situação, conclui-se que o comprimento da escada é igual a?
Resposta: 8,5m.
Tentativas:
Pelo Teorema de Pitágoras não consegui. (Parece que falta dados)
Por tangente não consegui. (Não tem os ângulos)
Prezados, desde já agradeço a ajuda de vcs professores.
Lúcio
Lucio
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Dez 21, 2011 07:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Geometria plana

Mensagempor fraol » Seg Dez 26, 2011 17:30

Oi Lúcio,

Deixa eu me intrometer nessa questão.

Você tem um triângulo no qual pode-se obter a relação do seno do ângulo oposto à parede assim:

sen \alpha = \frac{4}{x} onde x é o comprimento da parede.

Também, pelo enunciado, sabemos que o cos \alpha = \frac{x -1}{x} .

Agora basta aplicar a relação fundamental da trigonometria que o resultado vem.

Abç,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Geometria plana

Mensagempor Lucio » Seg Dez 26, 2011 22:28

Oi Francisco muito obrigado pela ajuda, confesso que passei um bom tempo tentando resolver do meu jeito e não consegui, mas agora cheguei ao resultado.
Vamos lá:
Relação fundamental da trigonometria

{cos}^{2}x + {sen}^{2}x = 1

\left(\frac{x-1}{x} \right)^2 + \left(\frac{4}{x} \right)^2 = 1

\frac{x^2-2x+1 + 16}{x^2}= 1

x^2-2x+17=x^2

-2x = -17


x = 8,5

Francisco mais uma vez a sua ajuda foi fundamental para eu chegar ao resultado
Muito obrigado Lúcio.
Lucio
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Dez 21, 2011 07:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.