por Gaussiano » Sáb Dez 10, 2011 13:59
As bissetrizes internas dos ângulos Aˆ e Cˆ do triângulo ABC cortam-se no ponto I. Sabe-se que
AI = BC e que m(ICˆA) = 2m(IAˆC) . Determine a medida do ângulo ABˆC .
Solução:
Seja N o ponto de encontro da bissetriz do ângulo ?ACB com o lado AB . Pelo caso A.L.A,
os triângulos NCA e ABC são congruentes. Consequentemente NC = AB = BC .
Pelo teorema do ângulo externo, ?BNC = NAC + ACN = ?NCB . portanto BN = BC = NC
e BNC é equilátero. Daí ?ABC = 60,?BCA = 80 e ?BAC = 40.
Eu vi essa solução e não entendi porque os triângulos NCA e ABC são semelhantes, já que o ângulo C em ABC é 4x e em NCA é 2x.
També não entendi porque ?BNC = NAC + ACN = ?NCB.
-
Gaussiano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Nov 04, 2011 09:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Semelhança de triângulos] Triângulos quadrados
por Debora Bruna » Seg Ago 08, 2016 12:18
- 0 Respostas
- 1385 Exibições
- Última mensagem por Debora Bruna

Seg Ago 08, 2016 12:18
Geometria Plana
-
- Semelhança de triangulos
por DanielRJ » Ter Dez 28, 2010 19:30
- 7 Respostas
- 5206 Exibições
- Última mensagem por Otavio Rubiao

Qui Jan 27, 2011 10:36
Geometria Plana
-
- Semelhança de triângulos
por igorcamilo » Sáb Jun 04, 2011 19:55
- 1 Respostas
- 2343 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 14:55
Geometria Plana
-
- semelhanca de triangulos
por bmachado » Ter Mar 13, 2012 17:02
- 1 Respostas
- 1401 Exibições
- Última mensagem por bmachado

Ter Mar 13, 2012 17:20
Geometria Plana
-
- Semelhança de triângulos
por TAE » Qua Jun 20, 2012 01:12
- 2 Respostas
- 4326 Exibições
- Última mensagem por Russman

Qua Jun 20, 2012 05:01
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.