por Gilder » Sex Jan 30, 2009 18:12
O problema é o seguinte:
"Considere um quadrado ABCD e os pontos E, F, K e L, pertencentes aos lados AB, BC, CD e AD, respectivamente,
tais que os segmentos EK e FL são perpendiculares. Mostre que EK = FL."
Basicamente, tento resolve-lo procurando triangulos semelhantes que provem essa equivalencia, mas mesmo prolongando retas e colocando seguimentos como EF e LK, não acho nenhuma semelhança eficiente.
Se alguem tiver alguma dica...
Agradeço desde já.
-
Gilder
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Jan 30, 2009 17:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Informática
- Andamento: cursando
por Sandra Piedade » Dom Fev 01, 2009 10:32
Seja G o centro do quadrado, ou seja, a intersecção das diagonais do quadrado. Note-se que as diagonais são perpendiculares e bissectam-se. Fazendo uma rotação das diagonais com centro em G e amplitude
![\alpha\in\left[0,\frac{\pi}{2} \right] \alpha\in\left[0,\frac{\pi}{2} \right]](/latexrender/pictures/e812ab689e2b73ce421dc75083a0562c.png)
, obtemos os triângulos [GDL], [GAE], [GBF] e [GCK]. Todos estes triângulos são geometricamente iguais. Tente ver porquê, relembrando os critérios de igualdade de triângulos. Diga depois as conclusões das suas observações, ok? Se não conseguir justificar a igualdade, eu ajudo. E depois da igualdade é fácil concluir a resposta à questão.

Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
por Gilder » Dom Fev 01, 2009 16:51
Deu certo. os triangulos tinham um lado de mesma medida, e os tres angulos iguais, assim eram congruentes, daí ficou tranquilo.
Obrigado!
Agora, preciso mostrar que o ortocentro de um triangulo acutangulo ABC, é o incentro do triangulo DEF, sendo D, E e F respectivamente os pés das alturas relativas aos lados AB, BC, CA.
Meu raciocínio tentei traçar uma reta s paralela ao lado BC, que passa por A. Então prolonguei os seguimentos ED, e EF, até atingirem a paralela s nos pontos D' e F', porém não consegui mostrar que o triangulo ED'F' é isósceles pois assim EA seria uma bissetriz.
Deve haver algum jeito mais facil. Qualquer ajuda é bem vinda.
-
Gilder
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Jan 30, 2009 17:57
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Informática
- Andamento: cursando
por Sandra Piedade » Ter Fev 03, 2009 08:32
Para essa terei que pensar um pouco mais. Não tenho dúvida de que é válida a afirmação, agora o porquê, vai dar um pouco mais trabalho. É melhor colocar essa questão num novo tópico de geometria, para que outros colaboradores pensem também nela... É que eu posso demorar mais do que você pode esperar.
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
-

Sandra Piedade
- Colaborador - em formação

-
- Mensagens: 40
- Registrado em: Ter Set 30, 2008 07:25
- Localização: Setúbal, Portugal
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic em Ensino da Matemática (Portugal)
- Andamento: cursando
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida quanto ao enunciado: Subespaços
por Leonardomaiaavila » Ter Fev 25, 2014 01:18
- 0 Respostas
- 1057 Exibições
- Última mensagem por Leonardomaiaavila

Ter Fev 25, 2014 01:18
Álgebra Linear
-
- Dúvida quanto a esta questão
por Bruno Felipe » Qui Mai 19, 2016 12:55
- 0 Respostas
- 1265 Exibições
- Última mensagem por Bruno Felipe

Qui Mai 19, 2016 12:55
Geometria Plana
-
- [transformada de fourier] dúvida quanto a resolução
por fabriel » Qua Dez 02, 2015 16:35
- 0 Respostas
- 1055 Exibições
- Última mensagem por fabriel

Qua Dez 02, 2015 16:35
Cálculo: Limites, Derivadas e Integrais
-
- [Determine a matriz x] dúvida quanto ao cálculo a ser feito
por Dani Rezende » Seg Ago 19, 2013 20:54
- 3 Respostas
- 3834 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 02, 2013 09:07
Matrizes e Determinantes
-
- Dúvida - desafio
por marinalcd » Qui Mar 06, 2014 16:37
- 2 Respostas
- 1800 Exibições
- Última mensagem por adauto martins

Sáb Dez 06, 2014 12:37
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.