• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ALTURA DO UMBIGO

ALTURA DO UMBIGO

Mensagempor maria cleide » Dom Mai 22, 2011 19:27

Observe a figura anexa:

Depois de tirar as medidas de uma modelo, Aristeu resolveu fazer uma brincadeira:
1º) esticou uma linha AB cujo comprimento é metade da altura dela;
2º) ligou B ao seu pé no ponto C;
3º) fez uma rotação de BA com centro B, obtendo o ponto D sobre BC.
4º) fez uma rotação CD com centro C, determinando E sobre AC.

Para surpresa da modelo, CE é a altura do seu umbigo. Tomando AB como unidade de comprimento e considerando \sqrt{5}=2,2, a medida CE da altura do umbigo da modelo é:
A-( )1,4
B-( )1,3
C-( )1,2
D-( )1,1
E-( )1,0


Conclusão: Sei que AB=AE=CE, portando um cateto é o dobro do outro, mas agora não consigo continuar.
Anexos
digitalizar0010.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: ALTURA DO UMBIGO

Mensagempor LuizAquino » Dom Mai 22, 2011 20:45

A figura abaixo ilustra o exercício.

altura-umbigo.png
altura-umbigo.png (6.86 KiB) Exibido 4147 vezes


As informações disponíveis são:
(i) \frac{\overline{AC}}{2} = \overline{AB} = \overline{BD} ;

(ii) \overline{CD} = \overline{CE} .

Deseja-se calcular \overline{CE} . Note que \overline{CE} = \overline{CB} - \overline{BD} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59