• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria espacial / plana.

Geometria espacial / plana.

Mensagempor idacil » Sáb Fev 26, 2011 17:48

Um plano é determinado pelos pontos M, N e P, do cubo representado na figura abaixo, que são pontos médios das arestas GF, AH e BC, respectivamente.
Imagem

a) Determine a secção desse plano com o cubo.
b) Considere que a medida da aresta do cubo seja a .
Calcule a área dessa secção em função de a .
c) Encontre três pontos (sobre as arestas do cubo) que
determinam um plano que seccione o cubo, em um trapézio
isósceles.

RESPOSTAS:

A)
Imagem

B)
A/2...???????

C)
Imagem?????????????????????????


2) Um sólido de revolução, obtido pela rotação de uma figura F ao redor de um eixo e , resulta em um cone circular reto e um cilindro circular reto, como na ilustração.
Imagem
a) Determine a posição do eixo na figura ao lado e a área de F em função do raio R, sabendo que as geratrizes do cone e do cilindro medem o triplo de R.
b) Determine o valor de R de modo que a secção por um plano que contenha o eixo e tenha área igual a 12 cm2.

RESPOSTAS:

A) se a região é um triangulo retangulo com base no eixo x e 2 verteces nos ponto (a,0) e (b,0) com angulo reto, então o eixo é vertical.

Area total = \Pi * r (g+r)
Area total = 3,14 * r(3r+r)
Area total = 3,14 * 5r
Area total = 15,70r

b) 12 = 15,70r
12 = r
15,70
r = 0,76

Por favor, me ajudem.
idacil
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Fev 04, 2011 14:49
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Geometria espacial / plana.

Mensagempor Abelardo » Seg Mar 07, 2011 01:58

Sabendo que o triângulo seccionado é equilátero, precisamos determinar o valor de qualquer lado e depois usar a fórmula da área de um triângulo equilátero.
Chamando de x um lado desse triângulo, temos:

{x}^{2}={a}^{2} + {\frac{a}{2}}^{2} ( observe que para determinar o lado NP, ele é a hipotenusa de um triângulo com catetos NA e PA. Logo, nessa equação, procuramos o valor de PA... consegue ver esse triângulo)!
... ..
... ..
... ..
x=\frac{a \sqrt[] {5}}{4}


Calculemos agora o valor de NP, temos o valor de NA=\frac{a}{2} e PA=x=\frac{a \sqrt[] {5}}{4}

{NP}^{2}={NA}^{2}+{PA}^{2}
.......
.......
.......
.......
NP= \frac{9{a}^{2}}{16}.

Sabendo que a área de um triângulo equilátero é A = {l^2 \sqrt{3}\over 4}.

Como temos o valor de um lado, NP.. é só substituir e encontramos no final : \frac{9{a}^{2}\sqrt[]{3}}{64}. Tá ai a letra B.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}