por von grap » Qui Fev 17, 2011 10:41
Dá uma ajuda pessoal...
1-No piso de um salão retangular foram usados 1200 tacos quadrados. Em outro salão retangular, cujas dimensões são 20% maiores que as do primeiro, quantos desses tacos devem ser usados?
2-Um retângulo R é tal que seu comprimento é 20% maior do que o lado de um quadrado Q, e sua largura é 20% menor que o lado do mesmo Q. Qual é a razão entre as áreas de R e Q, nessa ordem?
Valeu!!!
-
von grap
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Dez 07, 2009 15:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por DanielFerreira » Qui Fev 17, 2011 17:33
1-No piso de um salão retangular foram usados 1200 tacos quadrados. Em outro salão retangular, cujas dimensões são 20% maiores que as do primeiro, quantos desses tacos devem ser usados?
xy = 1200
![[x + \frac{20x}{100}][y + \frac{20y}{100}] = [\frac{120x}{100}][\frac{120y}{100}] = \frac{144xy}{100} [x + \frac{20x}{100}][y + \frac{20y}{100}] = [\frac{120x}{100}][\frac{120y}{100}] = \frac{144xy}{100}](/latexrender/pictures/4fc5b58e5ea00dc13eda6c01b7c67146.png)
por regra de três...
xy --------------------------------- 1200

-------------------------- k


"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Qui Fev 17, 2011 17:42
2-Um retângulo R é tal que seu comprimento é 20% maior do que o lado de um quadrado Q, e sua largura é 20% menor que o lado do mesmo Q. Qual é a razão entre as áreas de R e Q, nessa ordem?
Quadradolado = l
Retângulocomprimento: l +

largura: l -

S =

S = l²
Então,



"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana
por claudia » Qui Out 23, 2008 16:11
- 1 Respostas
- 8605 Exibições
- Última mensagem por admin

Ter Out 28, 2008 16:47
Geometria Plana
-
- Geometria plana
por Rayanne07 » Qua Jan 13, 2010 17:40
- 3 Respostas
- 4542 Exibições
- Última mensagem por Rayanne07

Sex Jan 15, 2010 10:46
Geometria Plana
-
- Geometria Plana
por MelvinMyster » Sex Ago 13, 2010 10:07
- 1 Respostas
- 4701 Exibições
- Última mensagem por alexandre32100

Sex Ago 13, 2010 13:15
Geometria Plana
-
- Geometria plana
por Paulo A G » Qua Jan 26, 2011 16:11
- 0 Respostas
- 2443 Exibições
- Última mensagem por Paulo A G

Qua Jan 26, 2011 16:11
Geometria Plana
-
- geometria plana
por Abner » Seg Jan 31, 2011 17:53
- 3 Respostas
- 3491 Exibições
- Última mensagem por Abner

Ter Fev 01, 2011 17:31
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.