por stanley tiago » Ter Fev 15, 2011 18:24
-
stanley tiago
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Seg Jan 17, 2011 14:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Ter Fev 15, 2011 18:54
Olá Stanley!

--> Teorema de Pitágoras

Outra informação:

Jogando no Teorema de Pitágoras:

Resolvendo a equação, encontra-se que o valor de c, é:
c = 5 (cateto adjacente do triângulo em questão)
Jogando o valor de c, em: [tex]a+c=11,25[tex], econtra-se:
a = 6,25 (hipotenusa do triângulo em questão).
Comente qualquer dúvida
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por stanley tiago » Ter Fev 15, 2011 21:43
oi Cleyson007 . então agora sim deu certo o resultado .
mas da forma q vc fez nao difere muito da q eu fiz !
eu gostaria de saber aonde esta o erro, que fez com que eu nao chegasse ao resultado correto ?
agardado resposta

-
stanley tiago
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Seg Jan 17, 2011 14:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Ter Fev 15, 2011 22:28
Suas contas estão erradas
(11,25 - a)² = 126,5625 - 22,5*a + a²
3,75² = 14,0625
Continue a partir daí
Um jeito mais fácil é trabalhar com números inteiros:
a + b = 11,25 ----> a + b = 45/4 ----> b = 45/4 - a
c = 3,75 -----> c = 15/4
a² = b² + c² ----> a² = (45/4 - a)² + (15/4)² ----> a² = 45²/4² - (2*45*/4)*a + a² + 225/16
0 = 2025/16 - 90*a/4 + 225/16 ---> 90*a/4 = (2025 + 225)/16 ---> 90*a = 2250/4 ---> 9a = 225/4 ---> a = 225/36 ---> a = 6,25
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por stanley tiago » Qua Fev 16, 2011 15:16
ah eu vi aonde esta o erro . eu esqueci de desenvolver o (quadrado da difereça )
e obrigado pela dica

-
stanley tiago
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Seg Jan 17, 2011 14:23
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda com pitagoras
por aLCANTARA » Qui Fev 25, 2010 17:22
- 3 Respostas
- 1159 Exibições
- Última mensagem por robrtoliveira

Qui Mar 25, 2010 18:27
Trigonometria
-
- teorema de pitagoras
por stanley tiago » Sex Jan 21, 2011 15:59
- 5 Respostas
- 4423 Exibições
- Última mensagem por stanley tiago

Sáb Jan 22, 2011 15:49
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Dom Fev 13, 2011 18:35
- 4 Respostas
- 3290 Exibições
- Última mensagem por stanley tiago

Seg Fev 14, 2011 22:00
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Sáb Fev 19, 2011 10:26
- 1 Respostas
- 1817 Exibições
- Última mensagem por stanley tiago

Dom Fev 20, 2011 17:48
Geometria Analítica
-
- Teorema de Pitágoras
por Lorrane12 » Sex Mar 23, 2012 19:50
- 9 Respostas
- 12234 Exibições
- Última mensagem por DanielFerreira

Sex Mar 30, 2012 00:19
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.