• Anúncio Global
    Respostas
    Exibições
    Última mensagem

torema de pitagoras

torema de pitagoras

Mensagempor stanley tiago » Ter Fev 15, 2011 18:24

num triângulo retângulo , a soma de um cateto com a hipotenusa vale 11,25cm .
O outro cateto mede 3,75cm . calcule os lados desconhecidos. R:6,25 e 5 cm

bom eu tentei fazer de tal maneira

b+a=11,25

b=\left(11,25-a \right)

a^2=b^2+c^2

a^2=\left(11,25-a \right)^2+3,75^2

a^2=126,56-a^2+14,06

2a^2=140,6225

a^2=\frac{140,6225}{2}

a=\sqrt[]{70,31}

a=8,38525492

b=11,25-8,38

b=2,87

O que nao é a resposta certa , mas eu nao encontrei outra maneire de fazer este .
ajuda por favor .
Detalhe , eu tirei a raiz na calculadora o q é péssimo
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: torema de pitagoras

Mensagempor Cleyson007 » Ter Fev 15, 2011 18:54

Olá Stanley!

{a}^{2}={b}^{2}+{c}^{2} --> Teorema de Pitágoras

a+c=11,25\Leftrightarrow\,a=11,25-c

Outra informação: b=3,75

Jogando no Teorema de Pitágoras:

(11,25-c)^2=(3,75)^2+c^2

Resolvendo a equação, encontra-se que o valor de c, é: c = 5 (cateto adjacente do triângulo em questão)

Jogando o valor de c, em: [tex]a+c=11,25[tex], econtra-se: a = 6,25 (hipotenusa do triângulo em questão).

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: torema de pitagoras

Mensagempor stanley tiago » Ter Fev 15, 2011 21:43

oi Cleyson007 . então agora sim deu certo o resultado .
mas da forma q vc fez nao difere muito da q eu fiz !
eu gostaria de saber aonde esta o erro, que fez com que eu nao chegasse ao resultado correto ?

agardado resposta :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: torema de pitagoras

Mensagempor Elcioschin » Ter Fev 15, 2011 22:28

Suas contas estão erradas

(11,25 - a)² = 126,5625 - 22,5*a + a²

3,75² = 14,0625

Continue a partir daí

Um jeito mais fácil é trabalhar com números inteiros:

a + b = 11,25 ----> a + b = 45/4 ----> b = 45/4 - a

c = 3,75 -----> c = 15/4

a² = b² + c² ----> a² = (45/4 - a)² + (15/4)² ----> a² = 45²/4² - (2*45*/4)*a + a² + 225/16

0 = 2025/16 - 90*a/4 + 225/16 ---> 90*a/4 = (2025 + 225)/16 ---> 90*a = 2250/4 ---> 9a = 225/4 ---> a = 225/36 ---> a = 6,25
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: torema de pitagoras

Mensagempor stanley tiago » Qua Fev 16, 2011 15:16

ah eu vi aonde esta o erro . eu esqueci de desenvolver o (quadrado da difereça )
e obrigado pela dica :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59