• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma da área dos tetraedros

Soma da área dos tetraedros

Mensagempor Pri Ferreira » Seg Abr 09, 2012 16:13

Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}
Ajuda, por favor!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma da área dos tetraedros

Mensagempor LuizAquino » Qui Abr 12, 2012 18:20

Pri Ferreira escreveu:Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}


Eu presumo que o texto do exercício seja: "(...) altura do tetraedro ti, com a altura do tetraedro tj (...)". Note que você escreveu "tj" e "tj".

A altura h de um tetraedro regular de aresta a é tal que:

h = \dfrac{\sqrt{6}}{3}a

Já a área total desse tetraedro regular é tal que:

A_T = \sqrt{3} a^2

Considerando que h1, h2 e h3 sejam as alturas, respectivamente, de t1, t2 e t3, com base na matriz dada no exercício podemos montar o seguinte sistema:

\begin{cases}
h_1 + h_2 = 6 \\
h_1 + h_3 = 8 \\
h_2 + h_3 = 10
\end{cases}

Resolvendo esse sistema você pode determinar cada uma das alturas.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.