por garciarafael » Seg Jul 18, 2011 22:00
Questão:
Um cone circular reto tem em seu interior 400ml de certo líquido, ocupando 2/5 de sua altura. A capacidade desse cone, em litros, é?
Alguém pode me ajudar?
Abraços
-
garciarafael
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Jul 18, 2011 21:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por garciarafael » Seg Jul 18, 2011 23:26
Ngm? =/...
O gabarito dis que a resposta é 6,25L.
Alguém sabe resolver?
-
garciarafael
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Jul 18, 2011 21:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por FilipeCaceres » Seg Jul 18, 2011 23:47
Olá garciarafael,
Para resolver está questão basta você ter conhecimentos da relação volume e altura, dado por:

Do enunciado temos:


Logo,



Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por garciarafael » Seg Jul 18, 2011 23:52
É cara, bacana.
No meu livro nao tem essa fórmula sabe. E voltei a estudar hoje praticamente, dps de 2 anos parado, ai ta meio difícil de entender nesse início...
Mas valeu, brigadão
-
garciarafael
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Jul 18, 2011 21:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [volume] Cone
por plugpc » Qui Jul 10, 2008 19:15
- 3 Respostas
- 5210 Exibições
- Última mensagem por admin

Sex Jul 11, 2008 03:42
Geometria Espacial
-
- VOLUME DO CONE
por EULER » Sáb Jul 31, 2010 22:59
- 2 Respostas
- 3920 Exibições
- Última mensagem por EULER

Ter Ago 03, 2010 14:08
Geometria Espacial
-
- Volume - Cone circular reto
por deividchou » Ter Ago 18, 2015 15:57
- 2 Respostas
- 4955 Exibições
- Última mensagem por deividchou

Qua Ago 19, 2015 10:31
Geometria Espacial
-
- [Geometria Espacial] Volume do tronco do cone
por jukkax » Sáb Out 19, 2013 21:32
- 1 Respostas
- 3432 Exibições
- Última mensagem por young_jedi

Dom Out 20, 2013 22:43
Geometria Espacial
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3521 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.