• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[tronco de cone / área lateral] geometrial espacial

[tronco de cone / área lateral] geometrial espacial

Mensagempor sandra silva » Ter Ago 26, 2008 22:08

me ajudem a resolver essa questao pois ja tentei e nao consigo

A cúpula de um abajur tem a forma da superficie lateral de um cone de ângulo reto. Os diametros das bases são de 20 cm e 54 cm e a geratriz é de 35 cm. Quantos metros quadrados sao gastos para forrar a cúpula externamente?

obrigada Sanrda
sandra silva
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Ago 26, 2008 22:00
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: lic em matematica
Andamento: cursando

Re: geometrial espacial

Mensagempor fabiosousa » Ter Ago 26, 2008 23:39

Olá Sandra, boas-vindas!

Como está tentando? Comente para facilitar a identificação de sua dúvida.

:idea: Sugestão:
Primeiro, revise cones. O cone reto possui eixo perpendicular ao plano da base.
Entenda como calcular a área lateral de um cone. Pense em "cortar e abrir" o cone.
Aqui há um tópico onde comentei sobre a área lateral: http://www.ajudamatematica.com/viewtopic.php?f=118&t=184&p=442#p440

Ao fazer o desenho para o seu problema, forme o cone completo, estendendo a cúpula do abajur.
Anote os raios e a geratriz do tronco.
Repare que em cima da cúpula há um pequeno cone.
Você precisará calcular a geratriz deste pequeno cone, por semelhança de triângulos.

Pois bem, considerando sua revisão para a área lateral, você pode então obter a área procurada por diferença.
A área pedida é a áreal lateral do cone completo menos a área lateral do pequeno cone.

Comente suas dúvidas em qualquer etapa! Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [tronco de cone / área lateral] geometrial espacial

Mensagempor sandra silva » Qua Ago 27, 2008 07:34

Obrigada Fabio vou tentar outra vez, é muito importante saer que existe pessoas que se interessa em ajudar o proximo.

Sandra
sandra silva
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Ago 26, 2008 22:00
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: lic em matematica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.