por neilendrigo » Sex Mai 09, 2008 00:18
Oi... Gostei muito do site de vcs... de grand eutilidade, sou estudando de engenharia elétrica - UDESC.
Bom, preciso tirar umas duvidas urgentes de algebra I, prciso entender até amanhã...
A dúvida é em relação a 2 questões, que são muito parecidads...
1ª
Encontre as equações reduzidas da reta que passa pelos pontos A(1, 4, -3), B(2, 1, 3) e C(4, -1, 7).
desculpa, ia escrever do jeito que resolvi, mas tah errado e tbm não sei colcar vetores nesse programa ai =(, tentei mas não consegui, então lá vai....
encontrei um vetor diretor AB=v, depois peguei v e o ponto c que pertence a reta, e daí através do vetor diretor da reta e e do ponto c, escreve a equaçao parametrica da reta r....
2ª
Encontre as equaçoes reduzidas da reta que passa pelos pontos A(1, 4, 3), B(2, 1, 3) e C(4, -1, 7) e é perpendicular ao eixo x.
a segunda questão, cheguei a desenhá-la, e percebi que a reta ABC é reversa ao eixo x, como consigo contemplar com elas sendo reversas? se elas forem realmente reversas, deveria somente fazer o produto misto e em seguida, caso elas sejam reversas, falar que não é possivel encontrar tais equaçoes pq a reta pedida é reversa ao eixo x??
muito obrigado...
cara, adorei o site de vcs, muiiiito mesmo!
estou na primeira fase de eng. elétrica, e a partir de hoje, utilizarei quase que diariamente a ajuda de vcs, pq realmente preciso, quanto mais estudamos, mais ignorantes percbemos que somos, aff, isso é triste, portanto... como estudarei muiiito... muitas duvidas surgirção, abraços... obrigado pela ajuda!
-
neilendrigo
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Mai 08, 2008 23:54
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sex Mai 09, 2008 16:11
Olá neilendrigo, seja bem-vindo!
Agradeço em nome de todos os seus elogios, muito obrigado!
Pensei em seus problemas e eis alguns comentários.
Em primeiro lugar, concordo com o procedimento citado por você para a resolução (1), pois com as equações paramétricas, obtemos então as equações simétricas e por fim as equações reduzidas, isolando as variáveis y e z e expressando-as em função de x.
Mas, o fato é que percebi que os pontos A, B e C não são colineares, nem no primeiro exercício, nem no segundo. Compare com o seu desenho, veja que em cada exercício, a tripla de pontos determina uma face e não uma reta:
Favor confirmar os pontos:
1)

,

e

2)

,

e

Tanto é que A, B e C seriam colineares se, e somente se, existisse

real, tal que:

Sendo no exercício (1)

e

:

Não existe lambda que satisfaça as três equações:

Ou seja, o par ordenado

é linearmente independente (LI, portanto, não são paralelos a uma mesma reta).
Analogamente para o exercício 2, mudando o ponto A.
Então, até que estes pontos sejam confirmados, não existe uma única reta que passa por eles (A, B e C ou A', B, C).
Sobre vetores no LaTeX, há alguma sintaxe relacionada, mas acho que a utilização não fica prática para este caso. Melhor utilizar algum outro programa para a "plotagem" e anexar a imagem gerada, caso queira.
Vamos conversando...
Até mais.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por neilendrigo » Sex Mai 09, 2008 23:21
Nossa, muito obrigado fabio... Quero saber se poderia meio que diariamente escrever duvidas no seu site, pq realmente preciso... na minha universidade o negócio é meio que no vire-se... eu tbm percebi que não eram colineares, mas só a poucas horas atrás, quando tentei refazer, e olha... deu vontade de chorar, pq se bater com algo tão básico por não perceber isso, dá desânimo. Muito obrigado, espero poder crescer com a tua ajuda, e a dos demais membros do site e é claro, fazê-los crescerem tbm =)...
-
neilendrigo
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Mai 08, 2008 23:54
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sáb Mai 10, 2008 13:15
Olá neilendrigo!
Um dos objetivos do site é justamente receber estas dúvidas, desde que acompanhadas das tentativas e dificuldades comentadas, não somente os enunciados de problemas, para que haja uma interação e compreensão, não apenas resolução.
Todas as ajudas são apoiadas por um estudo complementar do assunto, especialmente no caso do ensino superior, onde devo me posicionar como aluno.
Suas mensagens serão bem-vindas, embora o foco esteja nas dúvidas até o ensino médio, em conseqüência da minha formação e porque atual e infelizmente, eu ainda sou o único colaborador ativo nas ajudas.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por neilendrigo » Sáb Mai 10, 2008 15:07
Fabio, vou apresentar teu site para meus professores... Penso que vc deveria fazer o mesmo, e todos os demais, simplesmente apresenta-lo, descobri ele do nada, pq estava procurando resoluções na internet e livros... se vc fizer mais propaganda, tenho certeza que muiiiitos colaboradores aparecerão, abraços... ótimo fim de semana =)...
-
neilendrigo
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Mai 08, 2008 23:54
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Algebra linear e geometria analítica
por clari_27 » Sáb Mai 12, 2012 17:32
- 1 Respostas
- 1800 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 10:56
Geometria Analítica
-
- Geometria Analitica e Algebra linear
por Danizinhalacerda13 » Qui Mai 01, 2014 19:15
- 1 Respostas
- 2777 Exibições
- Última mensagem por Danizinhalacerda13

Qui Mai 01, 2014 19:25
Geometria Analítica
-
- Algebra linear e geometria analitica. Me ajudem!!!
por clari_27 » Sáb Mai 12, 2012 17:19
- 1 Respostas
- 1719 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 10:48
Geometria Analítica
-
- [Algebra linear e geometria analitica] Duvida
por lucasdemirand » Sáb Jul 06, 2013 15:32
- 1 Respostas
- 1330 Exibições
- Última mensagem por e8group

Dom Jul 07, 2013 21:27
Álgebra Linear
-
- Geometria Analitica e Algebra linear-O plano - Ajuda
por Danizinhalacerda13 » Qui Mai 01, 2014 20:37
- 3 Respostas
- 2307 Exibições
- Última mensagem por Cleyson007

Sáb Mai 03, 2014 10:15
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.