• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Poliedro

Poliedro

Mensagempor flavio2010 » Seg Jun 28, 2010 23:47

Um poliedro convexo tem 5 faces quadrangulares e 4 faces triangulares. O número de diagonais é:
a) 6
b) 8
c) 9
d) 10
e) 12
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Poliedro

Mensagempor vyhonda » Dom Jul 04, 2010 01:01

Para calcularmos as diagonais, primeiramente deve-se ter algumas informações como nº de vertices, nº de faces, nº de arestas ...

Para tal, utilizaremos a Relação de Euler que é a seguinte :: V + F = A + 2, onde V é o nº de vértices, F é o nº de faces e A é o nº de arestas.

Faces = 5 + 4 , pois temos 4 trinagulos e 5 quadrados
Arestas = \frac{5.4 + 4.3}{2} (pois cada um dos 5 quadrados possui 4 arestas e cada um dos 4 triângulos possui 3 arestas)

V + 9 = 16 + 2 , portanto V=9.

Com esses dados pode-se calcular o número de diagonais de um poliedro utilizando a fórmula :: D = \frac{v(v-1)}{2} - A - {\sum_{}^{}}_{df}

onde: - D : Total de diagonais do poliedro
- v : nº de vértices do poliedro
- A : nº de arestas do poliedro
- {\sum_{}^{}}_{df} : Somatória das diagonais das faces

Dessa forma: D = \frac{9(9-1)}{2} - 16 - 10

- Resposta :: Alternativa D


OBS:: Para Calcular {\sum_{}^{}}_{df} , basta utilizar a fórmula da diagonal para figuras planas d = \frac{n(n-3)}{2}, para cada figura geométrica, no caso apenas o quadrado possui diagonal, e cada quadrado possui 2 diagonais.
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)