• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Qui Mai 06, 2021 12:18

(ITA-1951)achar o volume de uma piramide regular de base quadratica cuja diagonal mede 4 m.e cuja aresta lateral mede 1,5m.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Mai 06, 2021 13:06

soluçao

aqui temos uma piramide regular(base de poligonos regulares,ou seja mesma medida dos lados),em nosso caso um quadrado.
mas a piramide nao pode ser reta(caso do ponto da base da altura estar no centro do poligono),pois aresta lateral e menor que 2m,ponto de encontro das diagonais.vamos a soluçao

o volume de uma piramide é dado por

{V}_{p}=(1/3).{A}_{b}.h

{A}_{b}={l}^{2}...

onde {A}_{b} area da base,
h,l altura e base respectivamente...

vamos calcular l

as diagonais se interceptam ao meio,logo teremos
triagulos-retangulos isosceles de lados iguais a 2m...tomemos um triangulo e usando pitagoras teremos...

{l}^{2}={2}^{2}+2^2=8\Rightarrow l=2.\sqrt[]{2}

{A}_{b}={l}^{2}={(2.\sqrt[]{2})}^{2}=8...

agora vamos calcular a altura h...como dito,a piramide é nao reta,logo a base da altura nao esta no centro do quadrado,pois a aresta lateral de medida 1,5 é menor que 2...mas continua na reta que liga os pontos medios de lados opostos(mostre isso,aqui é usar o centro de gravidade da piramide...)
a piramide tera duas faces laterais iguais e duas outras faces diferentes...as duas faces iguais sao triangulos retangulos,mostra-se usando o criterio de semelhança LAL,sao as faces que contem a aresta lateral de 1,5...
tomemos uma dessas faces,teremos entao um tringulo-retangulo de medidas 1.5,2,x...x a determinar...usando pitagoas teremos

x=\sqrt[]{(2.\sqrt[]{2})^2-(3/2)^2}=\sqrt[]{8-(9/4)}

x é o segmento dessa face,que une o vertice ao lado e perpendicular a esse...
tomemos o triangulo constituido por x,h,e o ponto da base da altura que sera a metade do ponto medio do lado do quadrado,que mede
\sqrt[]{2}...

logo,usando pitagoras teremos





x=\sqrt[]{23/4}=\sqrt[]{23}/2...

{x}^{2}={h}^{2}+{\sqrt[]{2}}^{2}\Rightarrow h=\sqrt[]{(\sqrt[]{(23}/2))^2-2}

h=\sqrt[]{(23/4)-2)}=\sqrt[]{15}/2...

{V}_{p}=(1/3).{A}_{b}.h=(1/3).8.\sqrt[]{15}/2=(4/3)\sqrt[]{15}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Mai 06, 2021 18:25

correçao

x=\sqrt[]{23}/2 nao é o segmento que une o vertice ao lado do quadrado,perpendicular a esse,e sim a outra aresta lateral...entao,vamos calcular esse segmento(chamaremos de y...).usando o criterio de semelhança LAL,teremos

y/(\sqrt[]{23}/2)=1.5/2\sqrt[]{2}=(3/2)/2\sqrt[]{2}

\Rightarrow y=(3/8).\sqrt[]{23}...

agora tomemos o triangulo com y=(3/8).\sqrt[]{23},l=\sqrt[]{2},h,determinaremos h.usando pitagoras teremos

h=\sqrt[]{{((3/8).\sqrt[]{23}})^{2}-{(\sqrt[]{2}})^{2}}

h=\sqrt[]{79/64}=\sqrt[]{79}/8

{V}_{p}=(1/3).8.(\sqrt[]{79}/8)=\sqrt[]{79}/3...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D