-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Abr 01, 2008 23:52
Olá Ananda!
Vi uma "luz" aqui, vou comentar...
Antes, para simplificar as referências pelo tamanho, apenas mudei as letras do enunciado para maiúsculas:
Um cone circular reto de altura

e raio da base

é cortado por um plano paralelo à base. Calcular a altura do cone parcial assim determinado, de modo que a sua superfície lateral seja equivalente à superfície lateral do tronco de cone assim obtido.
Resposta:

Considere uma seção meridiana do cone grande.
Nela, destaquei os triângulos abaixo:

- triangulos_semelhantes.jpg (20.91 KiB) Exibido 17413 vezes
Note que eles são semelhantes pelo caso AA ângulo-ângulo (ângulo reto correspondente e ângulo comum no topo).
Daqui, temos que:

Vamos conversando...
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 09:27
Bom dia!
Tinha enxergado isso depois rs
Vamos ver o que consigo hoje =D
Até mais!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qua Abr 02, 2008 12:56
Olá Ananda, bom dia!
Ótimo!
Apenas para expandir o conteúdo, vou comentar uma alternativa para esta sua prática e correta conclusão:
Como a área lateral do cone obtido e a do tronco são iguais, a área lateral do cone obtido deve ser a metade da área do cone original.
Com isso:

Primeiro, vamos mostrar como obter a área lateral do cone pequeno

.
Considere o cone aberto e planificado, conforme a figura:

- cone_area_lateral.jpg (31.45 KiB) Exibido 17351 vezes
Calcular a área lateral do cone pequeno é equivalente a calcular a área do setor circular

.
E

é a medida do arco determinado pelo círculo da base de raio

.
E

é a medida do arco determinado pelo círculo da base de raio

.
Fazendo uma regra de três relacionando área com arco:


A área do tronco

obtemos por diferença:
Sendo

a área do cone grande, a área que procuramos é

Para

fazemos um processo análogo ao anterior e obtemos

Então

Conforme o enunciado, queremos que

, logo


(chegamos àquela conclusão)


(achei mais imediato utilizar aqui a conseqüência dos triângulos semelhantes)





Entendendo este processo, não precisamos "alocar memória" para a "fórmula" da área lateral de um cone, pois podemos obtê-la rapidamente.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 13:48
Hm, entendi!
Mas é sempre bom saber da onde vem as fórmulas do que ficar decorando rs
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como chegar a formula de tronco de cone
por alinemuller » Ter Mai 11, 2010 17:36
- 0 Respostas
- 1735 Exibições
- Última mensagem por alinemuller

Ter Mai 11, 2010 17:36
Pedidos
-
- [Geometria Espacial] Volume do tronco do cone
por jukkax » Sáb Out 19, 2013 21:32
- 1 Respostas
- 3369 Exibições
- Última mensagem por young_jedi

Dom Out 20, 2013 22:43
Geometria Espacial
-
- [tronco de cone / área lateral] geometrial espacial
por sandra silva » Ter Ago 26, 2008 22:08
- 2 Respostas
- 6951 Exibições
- Última mensagem por sandra silva

Qua Ago 27, 2008 07:34
Geometria Espacial
-
- [Dúvida]Aplicações de Integração - Volume do Tronco de Cone
por Jhonata » Dom Jun 10, 2012 12:45
- 2 Respostas
- 9189 Exibições
- Última mensagem por Jhonata

Ter Jun 12, 2012 12:20
Cálculo: Limites, Derivadas e Integrais
-
- Relação entre raio e altura - Tronco de Cone
por pvgomes07 » Dom Ago 05, 2012 17:53
- 2 Respostas
- 6729 Exibições
- Última mensagem por pvgomes07

Ter Ago 07, 2012 00:58
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.