por futuromilitar » Sáb Mai 21, 2016 17:29
Numa pirâmide hexagonal regular a aresta da base mede 4cm. Sabendo-se que a área lateral da pirâmide é 60 cm2então o seu volume, em cm3, é:
a)
![8\sqrt[2]{39} 8\sqrt[2]{39}](/latexrender/pictures/ee6a60596cc654fe73bd0bf0ef9270c7.png)
b)
![48\sqrt[2]{3} 48\sqrt[2]{3}](/latexrender/pictures/53b9eea408796cf57246b2aac4b388a0.png)
c)
![16\sqrt[2]{13} 16\sqrt[2]{13}](/latexrender/pictures/b28c277d7de61084d2100cad12b83151.png)
d)
![48\sqrt[2]{13} 48\sqrt[2]{13}](/latexrender/pictures/8b511f4a5de80a960cceb446938b2fe9.png)
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
-

futuromilitar
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 19, 2016 17:50
- Localização: Itapajé,Ceará,Brasil
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Contabilidade
- Andamento: formado
por futuromilitar » Qui Mai 26, 2016 22:00
up
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
-

futuromilitar
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 19, 2016 17:50
- Localização: Itapajé,Ceará,Brasil
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Contabilidade
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- aresta da base - piramide
por DCristina » Qua Mai 19, 2010 00:24
- 1 Respostas
- 3912 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 20:26
Geometria Espacial
-
- Cubo inscrito na base de uma pirâmide
por Ani » Ter Dez 07, 2010 10:14
- 0 Respostas
- 1974 Exibições
- Última mensagem por Ani

Ter Dez 07, 2010 10:14
Geometria Espacial
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2596 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- [Lógica Digital] Sistema Numérico Conversão Base X - Base 10
por Luc4sPaulo » Sex Fev 17, 2017 12:32
- 0 Respostas
- 3934 Exibições
- Última mensagem por Luc4sPaulo

Sex Fev 17, 2017 12:32
Lógica
-
- [Base] Encontrar uma base e a dimensão do subespaço
por anderson_wallace » Sex Jan 10, 2014 00:48
- 3 Respostas
- 13549 Exibições
- Última mensagem por Guilherme Pimentel

Qua Jan 15, 2014 05:23
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.