por Leocondeuba » Ter Nov 05, 2013 22:08
Olá a todos. Estou com dificuldade nesta questão pois só encontro raízes que somando não resultam nos resultados das alternativas. Desde já agradeço a todos que tentarem me ajudar.

Na figura ao lado, as medidas a, b, c são, respectivamente, iguais ao polinômios 3x² + 5, 2x³ - 2x, e x² + 1.
Se P(x) é o polinômio que representa a área total do sólido representado na figura, então a soma dos inversos das raízes de P(x) é igual a:
01)12/5 02) 8/5 03)4/5 04)-8/5 05)-6/5
-
Leocondeuba
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Mai 11, 2013 19:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Dom Jan 31, 2016 21:33
Olá!!
A área da figura em questão é dada por 2(ab + ac + bc). Então, P(x) = 2[(3x² + 5)(2x³ - 2x) + (2x³ - 2x)(x² + 1) + (3x² + 5)(x² + 1)].
Desenvolvendo chegamos a P(x) = 16x^5 + 6x^4 + 8x³ + 16x² - 24x + 10.
O problema pede a soma dos inversos das raízes de P(x). Ora, se considerarmos as raízes como sendo x_1, x_2, x_3, x_4 e x_5, teremos:
1/x_1 + 1/x_2 + 1/x_3 + 1/x_4 + 1/x_5 =
(x_2 . x_3 . x_4 . x_5 + x_1 . x_3 . x_4 . x_5 + x_1 . x_2 . x_4 . x_5 + x_1 . x_2 . x_3 . x_4)/(x_1 . x_2 . x_3 . x_4 . x_5) =
Das Relações de Girard, tiramos que: se P(x) = Ax^5 + Bx^4 + Cx³ + Dx² + Ex + F, então:
- a soma dos produtos das raízes tomados quatro a quatro é dada por (+ E)/A;
- o produto das raízes é dado por (- F)/A.
Isto posto, temos que:
E/A : (- F)/A =
E/A . A/(- F) =
E/(- F) =
(- 24)/(- 10) =
24/10 =
12/5
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- UESB 2012 Geometria Espacial Prisma
por Garibaldi » Qui Dez 03, 2015 11:28
- 0 Respostas
- 3927 Exibições
- Última mensagem por Garibaldi

Qui Dez 03, 2015 11:28
Geometria Espacial
-
- [Progressão Aritmética] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:03
- 1 Respostas
- 1993 Exibições
- Última mensagem por e8group

Ter Nov 05, 2013 23:36
Progressões
-
- [Reta e Circunferência] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:05
- 0 Respostas
- 993 Exibições
- Última mensagem por Leocondeuba

Ter Nov 05, 2013 22:05
Geometria Analítica
-
- [Plano Argand-Gauss] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:06
- 0 Respostas
- 1665 Exibições
- Última mensagem por Leocondeuba

Ter Nov 05, 2013 22:06
Números Complexos
-
- UESB 2012 Geometria analítica
por Garibaldi » Ter Dez 01, 2015 18:40
- 1 Respostas
- 4277 Exibições
- Última mensagem por DanielFerreira

Dom Jan 31, 2016 21:02
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.