• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Espacial] Volume do tronco do cone

[Geometria Espacial] Volume do tronco do cone

Mensagempor jukkax » Sáb Out 19, 2013 21:32

Considere um cone circular reto de altura 12 cm e área da base 32π cm2. Considere também um plano α paralelo à base, determinando um tronco de cone e um cone menor cuja área da base é 18π cm2.

Calcule o volume do tronco de cone.
jukkax
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 19, 2013 20:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Espacial] Volume do tronco do cone

Mensagempor young_jedi » Dom Out 20, 2013 22:43

sabendo a area das bases, se determinam seus raios

\pi r^2=32\pi

r=4\sqrt2

\pi r^2=18\pi

r=3\sqrt2

por semelhança de triangulos se encontra alatura do cone menor

\frac{12}{4\sqrt2}=\frac{h}{3\sqrt2}

h=9

para calcular o volume do tronco fazemos o volume do cone maior menos o cone menor

V=\frac{32\pi.12}{3}-\frac{18\pi.9}{3}=74\pi
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1237
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.