• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[volume] Cone

[volume] Cone

Mensagempor plugpc » Qui Jul 10, 2008 19:15

Perdoe-me mas já tentei resolver esta questão e não consegui no livro do Dante tem uma parecida só que ele já põe o ângulo de 30º graus, e essa não. Não sei como chegar ao resultado correto.
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

plugpc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 07, 2008 22:00
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matemática
Andamento: cursando

Re: Cone

Mensagempor admin » Qui Jul 10, 2008 20:32

Olá plugpc, boa noite, boas-vindas!

O seu exercício se resume em calcular o raio do disco da base do cone, veja o motivo:
Podemos considerar o volume pedido V pela diferença:

V = V_\text{esfera} - V_\text{cone}


Como o raio R da esfera é dado, o cálculo do volume da esfera é imediato:

V_\text{esfera} = \frac{4}{3}\pi R^3

E para o volume do cone, a altura h é dada, falta o raio r da base:

V_\text{cone} = \frac{1}{3}\pi r^2 h

Para calcular este raio r, basta você anotar os valores dados no desenho e perceberá que r é um dos catetos do triângulo retângulo menor. Já temos as medidas do outro cateto e da hipotenusa, então, resta aplicar o teorema de Pitágoras.

Comente qualquer dúvida.
Caso necessário, envio posteriormente o desenho destacando as medidas.
Você deverá encontrar como resposta V = \frac{23\pi}{3}.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Cone

Mensagempor plugpc » Qui Jul 10, 2008 21:14

Se possível eu adoraria obrigado só assim tiraria todas as minhas dúvidas desde já agradeço por tudo manteremos contato com questões a sua altura por enquanto só apenas um aprendiz mas gosto muito de matemática e tenho certeza que vou melhorar com o tempo.
plugpc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 07, 2008 22:00
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matemática
Andamento: cursando

Re: Cone

Mensagempor admin » Sex Jul 11, 2008 03:42

Olá!

Reescrevendo o enunciado:
01. Um cone reto com altura medindo 3 está inscrito em uma esfera com raio medindo 2, como ilustrado a seguir:
esfera_cone.jpg
esfera_cone.jpg (5.14 KiB) Exibido 7187 vezes

Qual o volume da região do interior da esfera que é exterior ao cone?

A) \frac{25\pi}{2}

B) \frac{23\pi}{3}

C) \frac{25\pi}{4}

D) \frac{27\pi}{5}

E) \frac{28\pi}{9}


Apenas recapitulando, o primeiro passo foi perceber que o volume pedido é a diferença dos volumes da esfera pelo cone.
Em seguida, constatamos que dentre os volumes que precisamos calcular, apenas falta a medida do raio da base do cone.
Esta constatação se dá considerando uma seção na esfera, passando pelo vértice do cone e pelo centro de sua base.
Destacando esta seção, temos a seguinte figura:
disco.jpg


Do triângulo retângulo CDE, pelo teorema de Pitágoras, obtemos o raio procurado, para então finalizarmos o problema calculando o volume pedido.

Espero ter ajudado.
Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}