por engesalles » Qua Fev 24, 2016 11:13
Bom dia, estou com uma dificuldade em uma questão, que a principio achei que seria fácil:
Num paralelepípedo reto-retângulo as medidas a, b e c das arestas são proporcionais aos
números 4, 3 e 2. A área lateral desse prisma vale 252 cm2. Assim, pode-se afirmar que o
volume desse sólido é, em cm3, igual a:
a) 588.
b) 628.
c) 648.
d) 668.
*resposta segundo o gabarito é 648
Minhas Tentativas... por ser um volume com as três dimensões diferentes ela terá uma área da base, e duas áreas laterais distintas. O enunciado deixa em aberto sobre qual é essa de 252cm².
-Por convenção, a, b e c são área da base (a x b) e a altura (c). Estou supondo isso para ter parâmetros para a resolução.
-Por serem proporcionais, os lados, posso imaginar a seguinte fórmula: 4X.3X.2X=Volume Total. Sendo X o valor. Se eu aplicar nessa formula o valor que o gabarito me da, vou achar X=3.
O fato é que não consegui associar a Area=252 com a resolução do problema.
Preciso de ajuda.
Muito obrigado.
-
engesalles
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Fev 24, 2016 10:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- volume do prisma
por Seba » Ter Mar 30, 2010 17:08
- 1 Respostas
- 5141 Exibições
- Última mensagem por admin

Ter Mar 30, 2010 18:24
Geometria Espacial
-
- Geometria - Volume de um prisma
por Janffs » Qui Nov 15, 2012 18:14
- 1 Respostas
- 3123 Exibições
- Última mensagem por young_jedi

Qui Nov 15, 2012 20:36
Geometria Espacial
-
- Determine a área total e o volume do prisma Hexagonal
por andersontricordiano » Qui Nov 10, 2011 15:55
- 1 Respostas
- 3241 Exibições
- Última mensagem por MarceloFantini

Qui Nov 10, 2011 19:54
Geometria
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2603 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- [Cálculo do Volume] Variação do volume em porcentagem
por Douglaasag » Sex Out 10, 2014 09:23
- 0 Respostas
- 4375 Exibições
- Última mensagem por Douglaasag

Sex Out 10, 2014 09:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.