por Ananda » Sex Abr 04, 2008 15:21
Boa tarde!
Eis o exercício:
Numa festa de aniversário, o vinho foi servido em taças de cristal de forma cônica. A abertura das taças é de 4cm de raio interno com profundidade de 12 cm. A pérola do colar de uma das convidadas da festa deslocou-se e foi cair dentro de uma taça. Se a pérola tem formato esférico de 1 cm de raio, qual a menor distância, em centímetros, da pérola em relação ao fundo da taça?
Resposta: ![\sqrt[]{10}-1 \sqrt[]{10}-1](/latexrender/pictures/d622e47247a58eb81f5d462b6ca1ea32.png)
Eu pensei em usar a relação de semelhança, compararando a área dos cilindros, mas com isso obtive como resposta 3 cm e subtraindo mais 1 cm do raio da esfera (parte debaixo) deu 2 cm.
Tentei fazer outro exercício de mesmo modelo e também não consegui obter a resposta certa.
Gostaria de saber se meu raciocínio está errado desde o início ou se esqueci de algum detalhe.
Grata desde já!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sex Abr 04, 2008 15:50
Olá Ananda, boa tarde!
Você pode fazer usando relação de semelhança sim e depois teorema de Pitágoras.
Melhor do que pensar em cilindros é simplificar reduzindo o problema para duas dimensões:
Faça uma seção meridiana no cone da taça.
Agora você terá um triângulo e uma circunferência.
Divida o triângulo pelo eixo de sua altura, você terá dois triângulos retângulos.
Na parte inferior, onde está a circunferência, una o centro aos outros catetos pelos raios.
Logo, você terá outros dois triângulos retângulos pequenos que são semelhantes aos maiores pelo caso AA (ângulo reto correspondente e ângulo comum).
Um cateto é o raio de medida 1, o outro você encontra por semelhança.
Depois, Pitágoras, sendo a hipotenusa x+1, onde x é a distância pedida.
Termina com uma equação de segundo grau.
Espero ter ajudado!
Até mais. Bom final de semana!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Sex Abr 04, 2008 15:55
Epa, escrevi errado haha
É esfera e cone... rs
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por Ananda » Sex Abr 04, 2008 16:12
Grata, Fábio!
Consegui entender e resolver!
Ótimo final de semana!
Ah, arruma o nome do tópico e meu primeiro post?
Grata
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Sex Abr 04, 2008 17:49
OK, Ananda!
Que bom!
Apenas para completar, segue a imagem da seção meridiana comentada:

- secao_meridiana_cone.jpg (10.32 KiB) Exibido 9007 vezes
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão sobre esfera e cone
por oeslle » Qui Out 16, 2008 22:42
- 4 Respostas
- 4132 Exibições
- Última mensagem por oeslle

Sex Out 17, 2008 19:53
Geometria Espacial
-
- [Geometria Espacial] Esfera inscrita no cone
por rochadapesada » Ter Abr 16, 2013 19:24
- 2 Respostas
- 4852 Exibições
- Última mensagem por rochadapesada

Qua Abr 17, 2013 20:27
Geometria Espacial
-
- Altura do cone inscritível na esfera de raio R
por Luiz 2017 » Sex Set 22, 2017 20:46
- 0 Respostas
- 3283 Exibições
- Última mensagem por Luiz 2017

Sex Set 22, 2017 20:46
Cálculo: Limites, Derivadas e Integrais
-
- O volume de uma esfera em relação a outra esfera
por Macedo Junior » Sáb Jul 23, 2016 21:01
- 2 Respostas
- 9334 Exibições
- Última mensagem por Macedo Junior

Sáb Jul 23, 2016 23:28
Geometria Plana
-
- Esfera
por renataf » Seg Nov 29, 2010 17:38
- 2 Respostas
- 4218 Exibições
- Última mensagem por renataf

Seg Nov 29, 2010 18:55
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.