-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Ter Abr 01, 2008 23:52
Olá Ananda!
Vi uma "luz" aqui, vou comentar...
Antes, para simplificar as referências pelo tamanho, apenas mudei as letras do enunciado para maiúsculas:
Um cone circular reto de altura

e raio da base

é cortado por um plano paralelo à base. Calcular a altura do cone parcial assim determinado, de modo que a sua superfície lateral seja equivalente à superfície lateral do tronco de cone assim obtido.
Resposta:

Considere uma seção meridiana do cone grande.
Nela, destaquei os triângulos abaixo:

- triangulos_semelhantes.jpg (20.91 KiB) Exibido 17420 vezes
Note que eles são semelhantes pelo caso AA ângulo-ângulo (ângulo reto correspondente e ângulo comum no topo).
Daqui, temos que:

Vamos conversando...
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 09:27
Bom dia!
Tinha enxergado isso depois rs
Vamos ver o que consigo hoje =D
Até mais!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qua Abr 02, 2008 12:56
Olá Ananda, bom dia!
Ótimo!
Apenas para expandir o conteúdo, vou comentar uma alternativa para esta sua prática e correta conclusão:
Como a área lateral do cone obtido e a do tronco são iguais, a área lateral do cone obtido deve ser a metade da área do cone original.
Com isso:

Primeiro, vamos mostrar como obter a área lateral do cone pequeno

.
Considere o cone aberto e planificado, conforme a figura:

- cone_area_lateral.jpg (31.45 KiB) Exibido 17358 vezes
Calcular a área lateral do cone pequeno é equivalente a calcular a área do setor circular

.
E

é a medida do arco determinado pelo círculo da base de raio

.
E

é a medida do arco determinado pelo círculo da base de raio

.
Fazendo uma regra de três relacionando área com arco:


A área do tronco

obtemos por diferença:
Sendo

a área do cone grande, a área que procuramos é

Para

fazemos um processo análogo ao anterior e obtemos

Então

Conforme o enunciado, queremos que

, logo


(chegamos àquela conclusão)


(achei mais imediato utilizar aqui a conseqüência dos triângulos semelhantes)





Entendendo este processo, não precisamos "alocar memória" para a "fórmula" da área lateral de um cone, pois podemos obtê-la rapidamente.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Ananda » Qua Abr 02, 2008 13:48
Hm, entendi!
Mas é sempre bom saber da onde vem as fórmulas do que ficar decorando rs
Grata!
Ananda
-
Ananda
- Usuário Parceiro

-
- Mensagens: 55
- Registrado em: Sex Fev 22, 2008 19:37
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como chegar a formula de tronco de cone
por alinemuller » Ter Mai 11, 2010 17:36
- 0 Respostas
- 1735 Exibições
- Última mensagem por alinemuller

Ter Mai 11, 2010 17:36
Pedidos
-
- [Geometria Espacial] Volume do tronco do cone
por jukkax » Sáb Out 19, 2013 21:32
- 1 Respostas
- 3370 Exibições
- Última mensagem por young_jedi

Dom Out 20, 2013 22:43
Geometria Espacial
-
- [tronco de cone / área lateral] geometrial espacial
por sandra silva » Ter Ago 26, 2008 22:08
- 2 Respostas
- 6954 Exibições
- Última mensagem por sandra silva

Qua Ago 27, 2008 07:34
Geometria Espacial
-
- [Dúvida]Aplicações de Integração - Volume do Tronco de Cone
por Jhonata » Dom Jun 10, 2012 12:45
- 2 Respostas
- 9192 Exibições
- Última mensagem por Jhonata

Ter Jun 12, 2012 12:20
Cálculo: Limites, Derivadas e Integrais
-
- Relação entre raio e altura - Tronco de Cone
por pvgomes07 » Dom Ago 05, 2012 17:53
- 2 Respostas
- 6731 Exibições
- Última mensagem por pvgomes07

Ter Ago 07, 2012 00:58
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.