por rochadapesada » Ter Abr 16, 2013 19:40
Três esferas de raios 1,1 e 4 são tangentes exteriormente duas a duas e tangentes ao plano a no pontos A, B e C respectivamente. Os lados do triângulo ABC medem:
a) 5, 5 e 2 b) 4, 2 e 2 c) 4, 4 e 2
d) com os dados não é possível calculá-los e) nenhuma das anteriores
Nessa questão eu tentei de tudo, usando os raios como os lados, mas não deu resultado nenhum, sendo que a resposta é "C"
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Ter Abr 16, 2013 21:15

- esferas.png (4.14 KiB) Exibido 2872 vezes
utilize semelhança de triangulos e encontre x e depois a distancia AB
para as duas eferas de raio 1 proceda de forma semelhante, faça um desenho se preferir para analisar, comente qualquer duvida
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por rochadapesada » Qua Abr 17, 2013 20:26
Eu queria entender o por quê a projeção ortogonal seria um dos lados e, como eles estão em um plano, então os três deveriam está no mesmo plano...
Eu achei a resposta, mas estou com dúvida nisso que está ai em cima...
-
rochadapesada
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Abr 04, 2013 22:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por young_jedi » Qua Abr 17, 2013 20:51
os tres estão no memso plano, é dificil colocar aqui um reprsentação 3D disto então temos esta vista lateral do prblema.
Nos sabemos que se a esfera é tangente ao plano então o raio da esfera faz um angulo de 90º com o plano neste ponto onde eles são tangentes, por isso temos os angulos de 90º e podemos utilizar a semelhança de triangulos
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Triângulos] Relação entre lados
por Gustavo Gomes » Dom Mai 25, 2014 20:04
- 0 Respostas
- 1081 Exibições
- Última mensagem por Gustavo Gomes

Dom Mai 25, 2014 20:04
Trigonometria
-
- [Geometria] - Triângulos
por Leonardoleo » Sex Ago 17, 2018 13:18
- 1 Respostas
- 7508 Exibições
- Última mensagem por DanielFerreira

Sex Set 13, 2019 16:28
Geometria Plana
-
- Geometria Plana: Triângulos
por GuiBernardo » Qui Mar 02, 2017 18:49
- 0 Respostas
- 15829 Exibições
- Última mensagem por GuiBernardo

Qui Mar 02, 2017 18:49
Desafios Difíceis
-
- Geometria Plana, triângulos
por FISMAQUI » Dom Abr 23, 2017 16:38
- 0 Respostas
- 11027 Exibições
- Última mensagem por FISMAQUI

Dom Abr 23, 2017 16:38
Geometria Plana
-
- [Geometria Plana] Semelhança de Triângulos
por vanessafey » Sáb Ago 27, 2011 23:50
- 4 Respostas
- 8070 Exibições
- Última mensagem por vanessafey

Dom Ago 28, 2011 01:59
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.