• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume

Volume

Mensagempor sergioh » Dom Abr 07, 2013 16:01

Quem pode me ajudar nessa:

Concidere o retangulo ABCD. Uma rotação em torno de AB cria-se um cilindro de 96? ? cm³ e uma rotação em torno de AD um cilindro de 144? cm³. Calculo os lados do retangulo.

Resposta é: 4cm e 6 cm, mas não consigo chegar até elas.

obrigado
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Volume

Mensagempor Russman » Dom Abr 07, 2013 16:37

Rotacionar em torno de um eixo significa tomar o valor deste eixo como o diâmetro do cilindro. Assim, chamando os lados do cilindro, respecctivamente, AB = x e AD = y , temos na 1° rotação um cilindro de raio de base x/2 e altura y. Na 2° temo um cilindro de altura x e raio de base y/2.

Como o volume do cilindro é dado por

V = \pi r^2h

então

96  \pi  =  \pi  (x/2)^2 y
144  \pi  =  \pi (y/2)^2 x.

Agora basta resolver o sistema e você terá os lados do retângulo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Volume

Mensagempor sergioh » Ter Abr 09, 2013 21:50

Cara, desculpe-me pela minha ignorância matemática, mas não consegui chegar em 4cm e 6cm, seguindo sua explicação. Pode fazer passo a passo?
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.