• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CUBO E PIRAMIDES....QUESTAO PRA FERA

CUBO E PIRAMIDES....QUESTAO PRA FERA

Mensagempor carolcmalta » Qui Out 08, 2009 05:04

Processo Seletivo/UFU - julho 2007 - 2ª Prova Discursiva

TERCEIRA QUESTÃO
Na figura abaixo, temos um cubo ABCDEFGH de aresta a = 6 cm. Os pontos I, J, K, L, M e N são pontos médios das
arestas a que pertencem.
Determine o volume da pirâmide de base hexagonal IJKLMN e vértice H.




FIGURA EM ANEXO









SITE ONDE ENCONTREI A QUESTAO:
http://www.ingresso.ufu.br/copev/arquiv ... =Pesquisar



OBS: Ja tentei calcular o valor do lado da base da piramide e achei 3 raiz de 2, calculei as arestas mas estou com muita duvida pois achei resultados diferentes e maneiras diferentes de fazer. Gostaria de saber qual o resultado exato e a maneira certa de resolver este exercicio
OBRIGADA
Anexos
C--Documents and Settings-Windows-Configurações locais-Temporary Internet Files-Content.IE5-FZ4UEPH7-Matematica_2_Julho2007[1].pdf - Adobe Reader.JPG
FIGURA DA QUESTAO
carolcmalta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 08, 2009 04:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: CUBO E PIRAMIDES....QUESTAO PRA FERA

Mensagempor carlos r m oliveira » Qui Out 08, 2009 11:32

Olhando pelo Triângulo JDH (reto em D) podemos calcular a aresta lateral da pirâmide considerada. Eu achei raiz de 45. Confirme as contas.

Com este valor podemos calcular o apótema da pirâmide o qual achei raiz de 162/2 (calculei rapidinho... confirme as contas).

O próximo passo é calcular o apótema da base = raiz de 27.

Com os apótemas da base e da pirâmide poderemos calcular a altura da pirâmide: raiz de 54/2

A área da base calculada é: 27*raiz de 3

Portanto, o volume da pirâmide = (27*raiz de 3)*(raiz de 54/2)/3 = 81*raiz de 2/2.

Não sei se as contas estão corretas mas creio que o raciocínio seja esse.
carlos r m oliveira
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Out 05, 2009 11:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: administração
Andamento: cursando

Re: CUBO E PIRAMIDES....QUESTAO PRA FERA

Mensagempor carolcmalta » Qui Out 08, 2009 14:06

Me passaram que a resposta dessa questao é : 27raiz de 13

Outra dúvida, como eu posso afirmar que as arestas da piramide são regulares, poderiam ser diferentes?
ate mais
carolcmalta
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 08, 2009 04:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?